

Near Electronics Cooling Requirements

Jason Andrews, Brian Hamilton, Hassan Jawahery, **Tom O'Bannon**, Will Parker, and Jack Wimberley

> University of Maryland Oct 8, 2015

Outline

- System Block Diagram
- Physical Layout Concepts
- Thermal Loads
- PEPI Chassis Conduction Cooling Implementation

UT Electronics Block Diagram

<u>LHCb</u>

Electronics and Support Subsystems

Power Rollup Summary

SubAssy	Thermal loads (Watts)
SBC-UL	2908.6
SBC-UR	2908.6
SBC-LL	2908.6
SBC-LR	2908.6
SBC Totals	11634.3
cable SBC-UL	499.6
cable SBC-UR	499.6
cable SBC-LR	499.6
cable SBC-LL	499.6
Total Cable: SBC>PEPI	1998.2
Station 0, UL PEPI	499.3
Station 1, UL PEPI	551.0
Station 0, UR PEPI	499.3
Station 1, UR PEPI	551.0
Station 0, LR PEPI	499.3
Station 1, LR PEPI	551.0
Station 0, LL PEPI	499.3
Station 1, LL PEPI	551.0
Total x8 PEPI Chassis	4201.0
UTaX	978.2
UTaU	978.2
UTbX	1088.6
UTbV	1088.6
UT Planes	4133.5
TOTALS Input Power for all	
4 SBCs (Watts):	21967.0
MARATON Output Power (Watts)	26672.8

~ 2900 Watts thermal load per SBC

~ 500 Watts (W.C.) thermal load per cable tray is spread over the 10 meter runs

~ 500 – 550 Watts thermal load per PEPI Chassis

PEPI Chassis Conceptual Design

Chassis End Cap for Connectors and Coolant

UL PEP

LR PER

UL PEPI

LL PEPI

Dry Gas Inlet for Condensation Prevention

PEPI Chassis Conduction Cooling Concepts

UT cooling plate modeled after TT plate

TT cooling plate for one detector quadrant

Board Level Conduction Cooling Concept

wedge lock plates mounted onto cooling plate, one for each backplane

Boards Mounted to Thermal Conduction Plates as needed

Cable Tray Access

- One Cable Tray Shared by Two PEPI Chassis
- Access for down-stream PEPI is direct
- Access for up-stream PEPI is through the Frame

Summary

- Near Electronics Thermal Load Estimates Complete
 - ~ 550 Watts Max per PEPI chassis
 - ~ 2900 Watts thermal load per SBC
- Detector Planes use CO2 system
- 4 Service Bays and 8 PEPI chassis use conduction cooling
 - Coolant type TBD