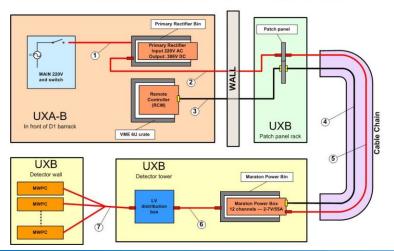


Infrastructure for LHCB Upgrade workshop: MUON power, electronics

- Muon upgrade in a nutshell
- LV power scheme
- HV power scheme
- Optical fibers connections
- Conclusions

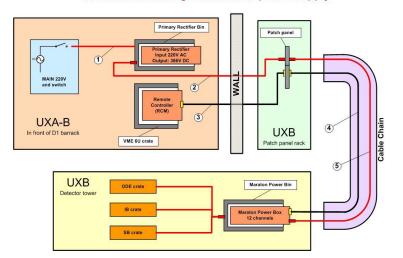
Muon upgrade in a nutshell


- Remove M1 station
- Preserve the present MWPCs and their front-end electronics in M2-M5 stations
 - to improve the detector performances at high luminosity, the replacement of the innermost chambers of M2 and M3 with high granularity detectors is under study
- Maintain the present Intermediate Board (IB) system (with the exception of M5R4) to generate the logical channels
- Use new Off Detector Electronics (nODE) boards for an efficient readout @ 40 MHz
 - Back compatible with the current off detector electronics and crates
 - Based on new custom ASIC (nSYNC), GBT and versatile link components
- Replace the Service Board (SB) system
 - Efficient chamber pulsing (nPDM) and control (nSB) via GBT and versatile link components

Current LV power scheme: FEE

- Based on Maraton System
 - Primary rectifiers and Remote Controllers in a safe environment (behind the wall)
 - Long cables + patch panels (in a fixed position) + movable cable chain
 - Power boxes on each rack of the muon towers
- Front-end electronics (FEE) powering scheme
 - Maraton power box + patch panel (rack) + linear regulator (on detector)
 - Each FEE power box has 12 channels @ 2..7V/55A (330 W maximum)
 - 8 FEE power boxes installed (2 for M1, 4 for M2-M3, 2 for M4-M5)
 - Present maximum power consumption per power box ∼ 2kW
 - Present maximum power (current) consumption per channel
 - $\sim 172 \text{ W (43A) in M4-M5}$
 - $\sim 130 \text{ W} (34\text{A}) \text{ in M2-M3}$

LV distribution diagram for FEE power supply (M2-M5)


Cable		Connector 1	Connector 2	Cable type	Max cable length (m)
	Type		Screw terminal		
1	SCEM				
	Ref.		Maraton_manual.pdf		
2	Type	Screw terminal	Amphenol 1331-m-303-FS, socket (female)	3 * 4 mm2 shielded	83
	SCEM			04.08.82.040.3	
	Ref.	Maraton_manual.pdf	Amphenol.pdf	maraton_power_cable.pdf	
3	Type	Cannon DSUB37, plug (male)	Cannon DSUB37, socket (female)	2 x18 shielded twisted pair	83
	SCEM	09.21.21.140.3 and 09.21.21.315.8	09.21.21.130.5 and 09.21.21.310.3	04.21.48.336.5	
	Ref.	DSUB37.pdf and DSUB37_acc.pdf	DSUB37.pdf and DSUB37_acc.pdf	maraton_control_cable.pdf	
4	Type	Cannon DSUB37, plug (male)	Cannon DSUB37, socket (female)	2 x 18 shielded twisted pair	27
	SCEM	09.21.21.140.3 and 09.21.21.315.8	09.21.21.130.5 and 09.21.21.310.3	04.21.48.336.5	
	Ref.	DSUB37.pdf and DSUB37_acc.pdf	DSUB37.pdf and DSUB37_acc.pdf	maraton_control_cable.pdf	
	Type	Amphenol 1331-M-303-MS, plug (male)	Amphenol 1331-m-303-FS, socket (female)	3 * 4 mm2 shielded	27
5	SCEM			04.08.82.040.3	
	Ref.	Amphenol.pdf	Amphenol.pdf	maraton_power_cable.pdf	
6	Type	Cablelug	Cablelug	1*16 mm2	0.3
	SCEM	04.76.21.038.5	04.76.21.038.5	04.08.61.330.1	
	Ref.	lug.pdf	lug.pdf	pp_cables.pdf	
7	Type	AMP 201310-1	Molex – 3191series	2 * 1.5 mm2 shielded	15
	SCEM				
	Ref.	Amp_conn.pdf	molex_conn.pdf	LV_cable.pdf	

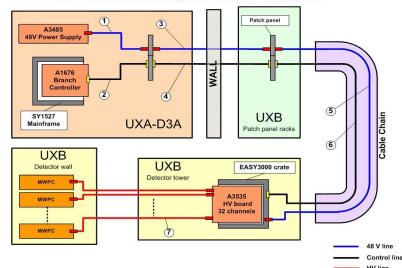
Current LV power scheme: off det. Electronics

- Off detector electronics powering scheme
 - 1 Maraton power box per rack
 - Up to 4 crates (IB, ODE, SB) per power box
 - Each power box has
 - 2 channels @ 2..7V/110A (660 W)
 - 8 channels @ 2..7V/55 A (330 W)
 - 10 off detector electronics power boxes installed (2 for M1, 4 for M2-M3, 4 for M4-M5)
 - Present maximum power consumption per power box ∼ 500 W

LV distribution diagram for crate power supply

Cable		Connector 1	Connector 2	Cable type	Max cable length (m)
Г	Type		Screw terminal		
1	SCEM				
	Ref.		Maraton_manual.pdf		
Г	Type	Screw terminal	Amphenol 1331-m-303-FS, socket (female)	3 * 4 mm2 shielded	83
2	SCEM			04.08.82.040.3	
	Ref.	Maraton_manual.pdf	Amphenol.pdf	maraton_power_cable.pdf	
Г	Type	Cannon DSUB37, plug (male)	Cannon DSUB37, socket (female)	2 x 18 shielded twisted pair	83
3	SCEM	09.21.21.140.3 and 09.21.21.315.8	09.21.21.130.5 and 09.21.21.310.3	04.21.48.336.5	
	Ref.	DSUB37.pdf and DSUB37_acc.pdf	DSUB37.pdf and DSUB37_acc.pdf	maraton_control_cable.pdf	
Г	Type	Cannon DSUB37, plug (male)	Cannon DSUB37, socket (female)	2 x 18 shielded twisted pair	27
4	SCEM	09.21.21.140.3 and 09.21.21.315.8	09.21.21.130.5 and 09.21.21.310.3	04.21.48.336.5	
	Ref.	DSUB37.pdf and DSUB37_acc.pdf	DSUB37.pdf and DSUB37_acc.pdf	maraton_control_cable.pdf	
Г	Type	Amphenol 1331-M-303-MS, plug (male)	Amphenol 1331-m-303-FS, socket (female)	3 * 4 mm2 shielded	27
5	SCEM			04.08.82.040.3	
ᆫ	Ref.	Amphenol.pdf	Amphenol.pdf	maraton_power_cable.pdf	

Upgraded LV power scheme


- Upgraded power system will use the current Maraton System components and cables
 - M1 will be removed
 - All system components can be used as spares
 - M2-M5 FEE power boxes
 - No changes foreseen
 - **6 FEE power boxes** + 6 patch panels required (in the racks of the muon towers -UXB)
 - Enough margin to handle a potential power increase with the rate
 - In case of innermost M2-M3 chambers replacement 2 more power boxes should be foreseen
 - M2-M5 off detector electronics power boxes
 - No changes foreseen
 - 8 power boxes required (in the racks of the muon towers- UXB)
 - The new nODE, nSB and nPDM boards will use the current rack power lines and they will generate internally the new required voltages
 - Current power is enough
 - » A local (rack level) power line reshuffling for the high power channels could be needed
 - 14 (+2) AD/DC primary rectifiers in 4 power boxes (in the rack behind the wall UXA-B)
 - No changes foreseen
 - 14 RCM (+2) controller modules in 2 VME like crates (in the rack behind the wall UXA-B)
 - No changes foreseen
 - Current cabling can be maintained
 - In case of innermost M2-M3 chambers replacement 2 more power and control cables should be installed

Upgraded HV power scheme

- No changes are foreseen in the high voltage systems and cabling (just remove the M1 components)
 - CAEN EASY 3000
 - In a safe environment
 - 1 SY1527LC Mainframe
 - 2 A1676 branch controllers
 - 2 A3485 48V Power supplies
 - 1 Local patch panel
 - On detector
 - 2 cavern patch panels + cable chain
 - 4 EASY3000 crates
 - 18 A3535 HV modules

HV distribution diagram for EASY system

Cable		Connector 1	Connector 2	Cable type	Max cable length (m)
1	Type	Cablelug	Screw terminal – Cabur CBD50	2*25 mm2 shielded	1.5
	SCEM	04.76.21.047.4		04.08.82.250.2	
	Ref.	Lug48.pdf	CBD50.pdf	LV48_cable.pdf	
2	Type	Cannon DSUB50, plug (male)	Cannon DSUB50, socket (female)	2 x25 shielded twisted pair	1.5
	SCEM	09.21.21.180.5 and 09.21.21.315.8	09.21.21.170.7 and 09.21.21.310.3	04.21.22.750.9	
	Ref.	DSUB50.pdf and DSUB50_acc.pdf	DSUB50.pdf and DSUB50_acc.pdf	easy_ctrl_cable.pdf	
Г	Type	Screw terminal – Cabur CBD50	Screw terminal – Cabur CBD50	2*25 mm2 shielded	83
3	SCEM			04.08.82.250.2	
	Ref.	CBD50.pdf	CBD50.pdf	LV48_cable.pdf	
Г	Type	Cannon DSUB25, plug (male)	Cannon DSUB25, socket (female)	2 x 10 shielded twisted pair	83
4	SCEM	09.21.20.100.5	09.21.20.090.0	04.21.22.720.5	
L	Ref.	DSUB.pdf	DSUB.pdf	easy_ctrl_cable.pdf	
Г	Type	Screw terminal – Cabur CBD50	Anderson power pp 75	2*25 mm2 shielded	22
5	SCEM			04.08.82.250.2	
L	Ref.	CBD50.pdf	DS-PP75.pdf	LV48_cable.pdf	
Г	Type	Cannon DSUB9, plug (male)	Cannon DSUB9, socket (female)	2 x5 shielded twisted pair	22
6	SCEM	09.21.20.020.4	09.21.20.010.6	04.21.22.710.7	
L	Ref.	DSUB.pdf	DSUB.pdf	easy_ctrl_cable.pdf	
	Type	Custom	Custom	5*0.14mm2 shielded	17
7	SCEM				
L	Ref.	multiHV_conn.jpg		Hv_cable_MWPC.pdf	

Present Conditions

Present power requirements

Front-end Electronics:

- * 8 maraton power boxes: 2 for M1, 4 for M2-M3, 2 for M4-M5
- * maximum power consumption per power box ~ 2kW

Off detector electronics

- * 10 maraton power boxes (1 per racks): 2 for M1, 4 for M2-M3, 4 for M4-M5
- * maximum power consumption per power box ~ 500 W
 - o each ODE ~ 23 W (56% of max power box consumption)
 - o each SB \sim 2,5W (9% of max power box consumption)
 - o each IB ~ 3W (35% of max power box consumption)

Upgrade Conditions

Front-end Electronics: No changes foreseen

Off detector electronics

* estimated max power consumption

o each nODE < 27 W --> +17% --> +48 W per rack (worst case)

o each nSB < 4W --> +60% --> +27 W per rack (worst case)

o each IB ~3W (No changes foreseen)

Therefore we could have an **increase of max 75 W per rack** (but this is a worst case estimation, because we don't know the correct nSYNC requirements)

* HV Power requirements*

We do not expect to have an increase in power requirements, since the system will not be changed

Conclusions

- No change required in crates and racks on the muon towers
- No major change foresees for LV power system
 - Re-use present Maraton components for frond-end electronics and off detector electronics power supply
 - Existing electrical power seem enough
 - Present cabling could be maintained
 - 2 new power boxes and cables should be installed in case of innermost M2-M3 chambers replacement
- No change foresees for HV power system