FCC-ee booster: preliminary design study

Dmitry Shwartz BINP

25.09.2015

FCC-ee complex possible scheme

Geometry

Booster vs collider: same circumference, same tunnel, same emittance.

Thus, the ring is cloned of Katsunobu Oide's version collider "inner" quarterring, except the IR. Two-fold & mirror-symmetry.

Geometry (2)

Inner arc & bypass was chosen by chance. Probable problems with MeV SR photons showering the detector (?)

Lattice functions

Half ring: 1200 1000 (IIII) 800 Θ : (II) 600 400 $\beta_{x,t}\beta_{y}$ 200 0 -200 10000 20 000 30 0 0 0 50 0 0 0 0 40 0 0 0 s, m Bypass: 1200 1000 (uuu) q 800 í. 600 β_{x}, β_{y} 400 200 0 M 24 500 25 0 0 0 25 500 26500 24000 26000

Top-up injection

Collider bhabha scattering lifetime:

E [GeV]	45.5	80	120	175
Lifetime [min]	298	73	29	21
Inj. Cycle [sec]	361	88	35	25

<< Injection both e+ & e-

Beam current decay in the collider for the set of energies.

time, s

Note: $L \propto I^+ I^-$: 2% I >> 4% L

Parameters

Energy [GeV]	20	45	80	120	175		
Cycle time [s]	12						
Stacking	no						
Circumference [m]	99918.2						
Bending radius [m]	11653.8						
FODO-cell length [m]	64.245						
Betatron tunes per cell	0.25						
Betatron tunes	334.45 / 333.2						
Radiative emittance [nm]	0.024	0.12	0.38	0.85	1.81		
Bending field [Gs]	57	129	229	343	509		
Energy Loss / turn [MeV]	1.21	31.1	310	1572	7109		
Transv. Damping time [s]	11	0.965	0.172	0.051	0.017		
Transv. Damping time [turns]	32974	2895	516	153	50		
Critical energy [MeV]	0.0015	0.017	0.097	0.33	1.02		

Intrabeam scattering

Energy: 20 GeV Total voltage: 141 MV "Nominal" bunch length: 0.63 mm Damping time: 11 s

SPS lowest emittance: 0.3 nm @ 20 GeV

IBS (2)

Emittance (equilibrium) growth due to IBS. $N_{bunch} = 1.8 \times 10^{11}$.

SPS lowest emittance:

Bunch length, mm

E, GeV

Dynamic Aperture estimations

Primitive tune chromaticity correction: two non-interleaved families SF, SD

Siberian snakes

Polarization preservation during acceleration demands two Siberian snakes placed with proper azimuthal angle proportion (Ivan Koop).

Plenty of work to be done!

- Lowest energy? Injection chain?
- Cycling, filling, intensities...
- Arrangement in the tunnel
- Injection to collider scheme
- 50 Gs dipoles practical possibility (cycling, shielding, stability, quality)
- Polarization aspects & insertions
- Tapering?
- Linear optics (depending on energy?)
- Nonlinear optics
- etc