

Tapering options in the future low emittance high energy collider FCC-ee

Andreas Doblhammer (CERN, Geneva) for the FCC-ee lattice design team

FCC Optics Meeting 25 September 2015

Energy loss through synchrotron radiation and energy gain in RF cavities leads to characteristic "Sawtooth-Effect"

Energy Dependent Bending Angle

$$x_D = D(s)\frac{\Delta E}{E_0}$$

 $\frac{\alpha}{l} = \frac{c}{E}B$

$$\alpha_{Dipole}(\Delta E) = \alpha_0 (1 - \frac{\Delta E}{E_0})$$

Energy Dependent Bending Angle

$$x_D = D(s)\frac{\Delta E}{E_0}$$
$$\frac{\alpha}{l} = \frac{c}{E}B \qquad \alpha_{Dipole}(\Delta E) = \alpha_0(1 - \frac{\Delta E}{E_0})$$

Normally the sawtooth-effect would just be accepted, but in FCC-ee, the sawtooth orbit is in the mm-range \rightarrow feeddown-effect of sextupoles and quadrupoles creates additional magnetic fields that distort the optics

What is Tapering?

Tapering: Adjusting the strength of each magnet so that the beam with local energy of $E_0+\Delta E$ is on the design orbit

Of course tapering every magnet in the ring is both expensive and difficult to maintain \rightarrow just dipole tapering and remachting the optics using dispersion suppressors and matching sections

Analytical Tapering

$$\alpha_{Dipole}(\Delta E) = \alpha_0 (1 - \underbrace{\Delta E}_{E_0}) \longrightarrow \alpha_{Kicker}(\Delta E) = \alpha_0 \frac{\Delta E}{E_0}$$

80 80

FCC Optics Meeting 25 September 2015

Numerical Tapering

- Kicker don't just compensate the energy dependent dipole bending angles, but the orbit is optimized numerically
- Kicker strength α_{Kicker} calculated using orbit correction in MAD-X

$$\alpha_{Kicker}(\Delta E) = ?$$

The Lattices

FCC-ee 12-fold

- Circumference: 100 km
- Energy: 175 GeV
- Energy Loss/Turn ≈ 8046 MeV
- 12 RF Sections (L= 1.8 km)
- 12 Arcs (L= 6.8 km)

FCC Optics Meeting 25 September 2015

The Lattices

FCC-ee Racetrack

- Circumference: 100 km
- Energy: 175 GeV
- Energy Loss/Turn ≈ 7870 MeV
- 4 Short Arcs (L= 4,4 km)
- 4 Long Arcs (L= 16,4 km)
- 6 Short RF Sections (L= 1,4 km)
- 2 RF Section (L= 4,2 km)

FCC Optics Meeting 25 September 2015

- sextupoles off
- no IPs
- kicker length: 0.0 m
- β_x -Beat: 1%
- β_y-Beat: 1,5%
- D_x-Beat: 4%

- sextupoles off
- no IPs
- kicker length: 0.0 m
- β_x-Beat: 2%
- β_y-Beat: 2%
- D_x-Beat: 5%

- sextupoles on
- 2 IPs
- kicker length: 0.2 m
- β_x-Beat: 6%
- β_y-Beat: 12%
- D_x-Beat: 5%

- sextupoles off
- no IPs
- kicker length: 0.0 m
- β_x -Beat: 3%
- β_y-Beat: 5%
- D_x-Beat: 5%

- sextupoles off
- no IPs
- kicker length: 0.0 m
- β_x -Beat: 5% •
- β_v -Beat: 6%
- D_x-Beat: 6%

- sextupoles on
- 2 IPs
- kicker length: 0.2 m
- β_x -Beat: 9%
- β_y-Beat: 14%
- D_x-Beat: 2%

8 vs. 2 RF sections

CERN

Kicker Strengths & Emittances

Magnet:	B*I (Tm):
Arc Dipole	5.56*10 ⁻¹
Kicker (175 GeV, 8RFs)	7.82*10-4
Kicker (175 GeV, 2RFs)	6.42*10 ⁻³

e.g.: for a kicker length of 0.2m, $B_{kick} \approx 0.07^* B_{dipole}$ for 8 RFs $\rightarrow U_{0, Kick} \approx 400 \text{ keV}$ $B_{kick} \approx 0.57^* B_{dipole}$ for 2 RFs $\rightarrow U_{0, Kick} \approx 26 \text{ MeV}$

Lattice:	ε _x before tapering (nm*rad):	ε _x after tapering (nm*rad):
8 RFs	0.9263	0.9512
2 RFs	0.9269	0.9728

Correction Kickers in MAD-X

Are correction kickers suited for tapering studies in MAD-X?

Correction Kickers in MAD-X

Are correction kickers suited for tapering studies in MAD-X?

Summary & Conclusions

- Several Tapering Methods possible
- Orbit improvement through dipole tapering with kickers:
 ≈ Factor 50-80 (depending on method, lattice, number of RFs,...)
- Integrated strengths of the tapering kickers are ≤ 1% of the integrated strengths of the arc dipoles
- Emittances are nearly unaffected by the tapering process
- Next Steps: Checking the effects of the kicker magnets on orbit tolerances, using orbit correction kickers (already in the ring) for tapering

