

WG3 Cryo-module design & integration

V.Parma, P.Duthil for the Working Group

GOALS and RESULTS:

Understand limits of scope of CEA and CNRS contributions

Result:

- CNRS: H/W contribution clear;
- CEA: not treated (busy in other WG). Limits of scope of CEA assembly tools to be appreciated later
- Identification of integration needs: components type, interfaces, functional needs (ex.cooling of HOM)

Result:

- Most components identified, but interface/functional needs need further iteration and work.
- Identify non covered items and possible distribution to institutes interested

Result:

Still unclear choice for some components and no commitment yet from institutes:

- ex. Coupler: CEA's solution; tuner (CEA?, BNL?) HOM type? (who supplies it?); magnetic shield?
- Define list of topics towards a functional specification: alignment requirements, thermal budgets (static+dynamic), mechanical requirements

Result:

Most of them addressed, but functionalities/specifications need iteration/definition (ex. T of heat intercepts).

WG3 (cont.d)

Define input for mechanical layouts (longitudinal and x-sectional),

Result:

New issues:

- Continuous SPL cryostat? Need for warm regions (diagnostics that cannot be cold)?
 Important cryomodule design consequences (cold to warm transitions).
- Vacuum valves:
- Cold/manual valves for cryomodule maintenance (remove at shut-downs)?
- Cold/fast valves for safety (vacuum break/leaks)?
- → Input from SPL beam physics and learn from XFEL or others
- Cryogenics specs (pressures & temperatures):

Result:

Temperature: ~2K is the baseline (but with provision for operation at 4.5K):

- 1.7% tunnel slope. No show stopper identified (control/instrumentation issues need to addressed)
- HeGRP (large gas return pipe) needs to be designed specifically for HPSPL (large vapor mass flow)

Pressure: design pressure and operating stability (impact on cavity design/operation) was not addressed.

WG3 (cont.d)

 Define the key ingredients for defining a layout for tunnel interfaces: longitudinal layout, interconnect space, coupler layout (vertical, lateral?)

Result:

Many ingredients identified:

- Supporting/hanging system: LHC system proposed but needs thorough tunnel integration study
- Couplers: vertical seems better but...difficult integration?
- What about connection to wave guides? (Not addressed in this WG)
- → Needs an urgent study with tunnel integration/civil engineering people
- Elaborate a work organization structure (for cryo-module prototype design/manufacture)

Result

 Proposal: Dedicated cryo-module Working Group steered by CERN, with regular (monthly?) meetings with CEA/CNRS (and other labs if any)

Other Issues

- Quadrupole magnets.
 - Powering schemes (individual? in series? clustered?) and gradient along linac? Fringe fields acceptance on cavities?
 - Trimming needs? Permanent magnets could be also used but may need trim coils.
 - → Needs will be addressed in SPL beam dynamics.
- Type of piezo tuner? CEA type could be used but also BNL (cold motor and piezo). Pending decision.
 - Inner cold motor? Yes,
 - Needs maintenance? In principle no, but...
- Magnetic shielding design & integration (internal? external?) <10 milligauss
 Fringe field acceptance from adjacent quad magnets?
- Helium vessel: material? Interface to piping? if Ti needs transition or Ti piping.
- Alignment requirements?
 - Cavity alignment today as tight as quad? Can be relaxed? → Q. to WG4. Will be addressed.

Prototype cryo-module

SPL cryomodules Master Schedule										
ID	0	Task Name	Duration	Start	Finish	Prede	2008	2009 tr tr tr tr	2010 tr tr tr tr	2011 20 tr tr tr tr tr tr
1		Prototype cryomodule ready for testing	0 days	Fri 28-10-11	Fri 28-10-11					a 28-10
2		Conceptual Design	12 mons	Mon 03-03-08	Fri 30-01-09			1		
3		Detailed Design of prototype cryostat	11.95 mons	Mon 02-02-09	Thu 31-12-09	2			1	
4		Prototype cryostat fabrication	15.2 mons	Mon 01-02-10	Thu 31-03-11	3				-
5	1	Design & construction of assembly tooling	18.5 mons	Wed 01-07-09	Tue 30-11-10					
6		Install cryostat assembly tools at CERN	87 days	Wed 01-12-10	Thu 31-03-11	5			_	-
7		Prototype cryomodule assembly	7 mons	Mon 18-04-11	Fri 28-10-11	4,6				

Time is very short!!

Thanks to all for the collaboration work!