

EPFL Plans for Beam-Beam Studies

T. Pieloni & L. Rivkin
Laboratory of Particle Accelerator Physics, EPFL & CERN/BE/ABP

Combined EuroCirCol annual meeting and review on FCC-hh optics & beam dynamics 19-20 November 2015 IPN Orsay, France

Baseline and Ultimate Scenarios

Parameters and Luminosity Target

Consider two main experiments

 Plus two side experiment for baseline

Baseline

- Goal is 250ab⁻¹ per year
- Focus on 25ns spacing

Ultimate

- Goal is 1000ab⁻¹ per year
- Focus on 25 and 5ns

Will consider reducing beam current for baseline, keeping luminosity target

	Baseline	Ultimate
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	20
Bunch distance [ns]	25 (5)	
Background events/bx	170 (34)	680 (136)
Bunch charge [1011]	1 (0.2)	
Norm. emitt. [µm]	2.2(0.44)	
IP beta-function [m]	1.1	0.3
IP beam size [μm]	6.8 (3)	3.5 (1.6)
RMS bunch length [cm]	8	
Max ξ for 2 IPs	0.01	0.03
Turn-around time [h]	5	4
Crossing angle [$\sigma\Box$]	12	Crab. Cav.

Baseline and Ultimate Scenarios

Parameters and Luminosity Target

Consider two main experiments

 Plus two side experiment for baseline

Baseline

- Goal is 250ab⁻¹ per year
- Focus on 25ns spacing

Ultimate

- Goal is 1000ab⁻¹ per year
- Focus on 25 and 5ns

Will consider reducing beam current for baseline, keeping luminosity target

	Baseline	Ultimate
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	20
Bunch distance [ns]	25 (5)	
Background events/bx	170 (34)	680 (136)
Bunch charge [1011]	1 (0.2)	
Norm. emitt. [µm]	2.2(0.44)	
IP beta-function [m]	1.1	0.3
IP beam size [μm]	6.8 (3)	3.5 (1.6)
RMS bunch length [cm]	88	
Max ξ for 2 IPs	0.01	0.03
Turn-around time [h]	5	4
Crossing angle [σ□]	12	Crab. Cav.

Relaxed versus Challenging scenario

Need to guarantee the Baseline and work to reach the Ultimate!

Tools

- Sixtrack single particle tracking for Dynamic aperture studies
 - DA for beam-beam (crossing angles, intensity scaling, long-range wires)
- Frequency Map Analysis (from Sixtrack developed for HL-LHC)
- COMBI (Coherent Multi Bunch multi Interaction code)
 - Coherent Beam-beam
 - Impedance and beam-beam interplay
 - Landau Damping
 - Radiation Damping and beam-beam limit
- TRAIN code → self consistent orbit, tune and chromaticity computations
- MADX code → optics considerations shifts, spread... footprints

Standard tools for Beam-Beam studies at CERN

Proposed contributions:

Experimental Insertion Region Design (WP3)

Beam-beam studies for FCC-hh:

- Linear effects dynamic beta, beating, optics considerations
- Dynamic aperture studies
- Beam-beam and radiation damping
- Coherent beam-beam
- Noise on colliding beams
- Orbit, chromatic, tune effects for train operation
- Leveling scenarios and beam-beam
- Mitigating techniques (e-lenses, wire compensators, crab cavities)
- Define operational scenarios (parameter space exploration)
- Landau Damping properties
- Interplay of beam-beam and machine impedance
- Stability of colliding beams with transverse feedback

Keep beam-beam effects under control, define IR operation, set parameters to avoid luminosity deterioration and instabilities

Proposed contributions: Experimental Insertion Region Design (WP3)

Beam-beam studies for FCC-hh:

- Linear effects dynamic beta, beating, optics considerations
- Dynamic aperture studies
- Beam-beam and radiation damping
- Coherent beam-beam
- Noise on colliding beams
- Orbit, chromatic, tune effects for train operation
- Leveling scenarios and beam-beam
- Mitigating techniques (e-lenses, wire compensators, crab cavities)
- Define operational scenarios (parameter space exploration)
- Landau Damping properties
- Interplay of beam-beam and machine impedance
- Stability of colliding beams with transverse feedback

Dynamic Beta and beating effect

Patrik Jorge (Travaux Pratique IV EPFL with X. Buffat)

Investigating the linear effects of beam-beam interactions

$$\frac{\beta^*}{\beta_0^*} = \frac{\sin(2\pi Q)}{\sin(2\pi(Q + \Delta Q))} = \frac{1}{\sqrt{1 + 4\pi\xi\cot(2\pi Q) - 4\pi^2\xi^2}}$$

Beam-beam interaction leads to optical distortion at interaction point itself

Dynamic beta

Beam-beam interaction leads to optical distortion at all other interaction points Dynamic beating

Expression above not valid during scan or several interaction points \rightarrow needs optics code for calculation MADX

Dynamic Beta effect single Interaction point

Depends on:

- Beam-beam parameter: ξ
- Tune : Q
- Configuration (IPS) and optics (phase advance)

LHC case has 1-2 % HL-LHC 8-10 % FCC 1-10%

Dynamic beta-beating due to beam-beam effects

Maximum beta change as a function of unperturbed tune

$$\max\left(\frac{\Delta\beta}{\beta}\right) = \frac{2\pi\xi}{\sin(2\pi Q_0)} \qquad \xi_{bb} = 0.02$$

Maximum beating as a function of tune

Dynamic beta-beating due to beam-beam effects

For beam-beam parameter of 0.03 this goes above 20% Synergy with HL-LHC studies T. Pieloni and R. Tomas Try to test experimentally local corrections in the LHC

Proposed contributions: Experimental Insertion Region Design (WP3)

Beam-beam studies for FCC-hh:

- Linear effects dynamic beta, beating optics considerations
- Dynamic aperture studies
- Beam-beam and radiation damping
- Coherent beam-beam
- Noise on colliding beams
- Orbit, chromatic, tune effects for train operation
- Leveling scenarios and beam-beam
- Mitigating techniques (e-lenses, wire compensators, crab cavities)
- Define operational scenarios (parameter space exploration)
- Landau Damping properties
- Interplay of beam-beam and machine impedance
- Stability of colliding beams with transverse feedback

Sixtrack and COMBI J. Barranco Post-doc 1st October 2015

Sixtrack

- Preliminary DA studies performed X. Buffat
- Tools in place
- Need to repeat for latest optics baseline and ultimate cases
- → Define crossing angles and scaling laws (intensity, #LRs)

Dynamic Aperture Studies

COMBI

- Includes already radiation damping, noise sources...
- Needs to identify beambeam limit

 \rightarrow is ultimate scenario achievable ξ_{bb} = 0.03 ?

Beam-Beam Limit in presence of radiation damping

Status and Plans EPFL from June

- Understand brightness limitations
 - External sources of noise/decoherence of beam- beam modes with large beambeam parameter
 - Interplay between beam-beam interactions and quantum excitation and IBS (i.e. "beam-beam limit")
 - Describe the dynamic aperture with small emittance beams and different IR design
 - All of the above with non-round beams
- Describe linear effects of beam-beam (orbit, dynamic β, beta-beating)
- For all of the above, study compensation scheme

Post-Doc
J. Barranco
since 1st Oct 2015 ~3 years

Under Graduated
Patrik Jorge
Sept2015-June2016

Status and Plans EPFL from June

- Understand brightness limitations
 - External sources of noise/decoherence of beam- beam modes with large beam-beam parameter
 - Interplay between beam-beam interactions and quantum excitation and IBS (i.e. "beam-beam limit")
 - Describe the dynamic aperture with small emittance beams and different IR design
 - All of the above with non-round beams
- Describe linear effects of beam-beam (orbit, dynamic β, beta-beating)
- For all of the above, study compensation scheme

Post-Doc J. Barranco since 1st Oct 2015 ~3 years

Post-Doc
To be hired early 2016

Under Graduated
Patrik Jorge
Sept2015-June2016

PhD Student to be hired 2016

Thank you!