FCC-hh Impedances and Single-Beam Instabilities F. Petrov (Task 2.4)

TECHNISCHE UNIVERSITÄT DARMSTADT

Material from O.Boine-Frankenheim, U. Niedermayer, X. Buffat, D. Schulte, V. Kornilov, E.Metral, N. Monet, B. Salvant, A. Chance, R. Kersevan, A. Lachaize et al

Contents

Introduction

- Impedances
- Thresholds and growth rates
- Multi-bunch tracking
- Broad-band Impedance Sources. 3D simulations.
- Conclusions and outook

FCC reference parameters (used in this study)

		Be
Circumference [km]	100	
Bunch spacing [ns]	25	Cu th
Bunch length [cm]	8-12	
Number of bunches	≈ 10000	
Q _x / Q _y	108.28 / 107.31	
Injection energies [TeV]	0.45; 1.5; 2.0; 3.3 ; 5.0	
Q _s	10 ⁻³ -5·10 ⁻³	
Normalized emittance	2.2 µm	
	•	Betatro
		2 prime

http://tlep.web.cern.ch/content/fcc-hh

Magnetoresistivity

No Ti-magnetoresistivity data available.

Assuming the same dependence for titanium and for copper.

$Z(\omega, B) = Z(\omega, 0) \sqrt{2}$	$1.00+0.00204 \cdot (B \cdot RRR)^{1.055}$
--	--

Energies [GeV]	B [T]	Impedance increase factor	
		Purity RRR=70	Purity RRR=300
450	0.15	1.01	1.05
1500	0.5	1.04	1.18
2000	0.66	1.06	1.24
3300	1.1	1.10	1.38
5500	1.83	1.14	1.56
	E. N	letral http://arxiv.org/p	df/1108.1643.pdf

Contents

Introduction

Impedances

- Broad-band Impedance Sources. 3D simulations
- Thresholds and growth rates
- Multi-bunch tracking
- Conclusions and outook

Impedance calculations in 2D. Discretization.

Full Geometry

Surface Impedance Boundary Conditions

Is necessary at low frequencies < 100 Hz.

Acceleration of calculations at f> 100 Hz. Simplified geometry.

Meshing is done in gmsh.

Disadvantage: pumping holes, longitudinal discontinuities – broad-band impedance sources can not be simulated.

*code: U. Niedermayer https://bitbucket.org/uniederm/beamimpedance2d/

BeamImpedance2D results for Symmetric Beam Screen

BeamImpedance2D.py vs Inductive Bypass for Collimators

 $Z_{col} = Y \left(1 + sign(\omega)i\right) \frac{c\mu_0 L_c}{2\pi b^2} \frac{1}{sign(\omega)(1 + b\sqrt{\frac{\mu_0 \omega \sigma_{DC}}{2}}) - i}$

*Comparison also X. Buffat http://goo.gl/8f055x

Contents

- Introduction
- Impedances

Broad-band Impedance Sources. 3D simulations (attempts)

- Thresholds and growth rates
- Multi-bunch tracking
- Conclusions and outook

Broad-band impedances. Holes, slits and rips

3D simulations in the time domain by CST Particle Studio®

Stabilization fins between beam pipe and reflector

Vacuum pumping holes

Long slits with connection at the end

Simulations with reasonable computation time are inaccurate (not enough grid cells)

Necessary to study in frequency domain:

- simulate two-wire measurements?
- write a separate 3D tool similar to BeamImpedance2D?

Wakefield simulation of hole/slits

Small effect, in the order of the numerical error!

The simulated wake is similar to the one without discontinuity

Contents

- Introduction
- Impedances
- Broad-band Impedance Sources. 3D simulations.

Thresholds and growth rates

- Multi-bunch tracking
- Conclusions and outook

Collimator and Beam Screen Impedance

At collimator: β_c =745 m ρ_{cFc} =5e-6 Ω/m

 $Z_{col} = Y (1 + sign(\omega)i)$

Gap sizes if scaled with energy

Gap Gap Energy [GeV] primary sec. [mm] [mm] 14 0 16.2 450 1500 8.9 7.7 2000 67 7.7 3300 5.2 6.0 4.2 4.9 5000

TECHNISCHE UNIVERSITÄT DARMSTADT

11/20/15 | ETIT | Accelerator physics group | Fedor Petrov | 14

 $C\mu_0 L_c$

TMCI and coupled-bunch instability: beam screen

TMCI threshold due to k=0 reaching -Q_s

$$V_{TMCI} = \frac{16 \pi m_p \gamma Q_x \omega_0 \sigma_z Q_s}{\Im (Z_{Tr,0}) e^2}$$

 $\tau_0^{-1} = \frac{j}{2Q\omega_0} \frac{e\beta I_0}{\gamma m_0 L} \Re (Z_{tr,0})$

$$Z_{\pi,k} = \frac{\sum Z(\omega_p) H(\omega_p, k)}{\sum H(\omega_p, k)}$$

I

Е	Q	N _{TMCI}	Growth rate [Turns]	
[GeV]	5		Q _f =0.72 f _{sb} =837 kHz	Q _f =0.32 f _{sb} =2 kHz
450	5.83·10 ⁻³	5.8.1011	8	16
1500	3.00.10-3	8.9·10 ¹¹	22	47
2000	2.93.10-3	$1.1 \cdot 10^{12}$	29	61
3300	2.43.10-3	$1.41 \cdot 10^{12}$	43	91
5000	2.12.10-3	$1.58 \cdot 10^{12}$	59	119

TMCI and coupled-bunch instabilities due to collimators.

Impedance averaged over **Coupled-bunch** TMCI threshold the mode spectrum instability growth rate due to shift to Q $\tau_0^{-1} = \frac{j}{2Q\omega_0} \frac{e\beta I_0}{\gamma m_0 L} \Re (Z_{tr,0})$ $Z_{\pi,k} = \frac{\sum Z(\omega_p) H(\omega_p, k)}{\sum H(\omega_p, k)}$ $N_{TMCI} = \frac{16 \pi m_p \gamma Q_x \omega_0 \sigma_z Q_s}{\Im (Z_{\tau_{r_0}}) e^2}$ **Growth rate** E [Turns] 1500 3.00.10-3 $1.5 \cdot 10^{12}$ 21453300 2.43.10-3 $2.5 \cdot 10^{12}$ 3475

Beam screen + collimators

1_=	= 1 + 1	1.5 TeV	5.6·10 ¹¹
$N_{_{tot}}$	$N_{_{col}}$ $N_{_{screen}}$	3.3 TeV	9·10 ¹¹

Contents

- Introduction
- Impedances
- Thresholds and growth rates
- Multi-bunch tracking
- Broad-band Impedance Sources. 3D simulations.
- Conclusions and outook

Towards the Multi-Bunch Tracking Simulations

Tracking simulations indicate lower ~20% TMCI thresholds than simple estimations

The 2D beam representation:

 N_b - number of bunches; N – bunch population; only y,y',z,dp/p

11/20/15 | ETIT | Accelerator physics group | Fedor Petrov | 19

Towards the Multi-Bunch Tracking Simulations

Tracking simulations indicate lower ~20% TMCI thresholds than simple estimations

The 2D beam representation:

- N_b number of bunches; N bunch population; only y,y',z,dp/p
- Each bunch consists of macroparticles N_{mac}

Towards the Multi-Bunch Tracking Simulations

Tracking simulations indicate lower ~20% TMCI thresholds than simple estimations

The 2D beam representation:

- N_b number of bunches; N bunch population; only y,y',z,dp/p
- Each bunch consists of macroparticles N_{mac}
- 2 grids longitudinally:
 - fine grid to resolve bunch centroid (<1 cm);
 - coarse grid to resolve only coupled bunch motion
- (>7.5 m)
- 2 wakefield types are calculated:

- single-bunch wakefield for each bunch (applied to slices of a bunch)

- multibunch wakefield (applied to each bunch as a kick)

Data storage 1. N_b-length array to store coupled-bunch centroid

2. 2D-[N_bxN_{mac}] array to store macroparticle positions and momenta inside each bunch

Schematic Steps Implemented in Python

Train of 200 bunches.

To estimate the coupled-bunch growth rate analytically a simple formula for coasting beam was utilized.

Disadvantage: synchrotron motion is absent.

Comparison between the following cases:

- equidistant bunches (L_{b} =0.5 km) vs bunch train (L_{b} =7.5 m)
- finite synchrotron tune vs zero synchrotron tune

Examples: Bunch Amplitudes (Below Sacherer TMCI) 3300 GeV; 3.0-10¹¹ p/b

Bunch average offset as a function of turn.

Examples: Bunch Amplitudes (Below Sacherer TMCI) 3300 GeV; 3.0-10¹¹ p/b

Bunch average offset as a function of turn.

Synchrotron tune itself leads to a stabilization of a coupled bunch motion. Frozen beams behave similarly

Examples: Bunch Amplitudes (Above Sacherer TMCI) 3300 GeV; 1.2·10¹² p/b

Bunch average offset as a function of turn.

Packed in one train

Examples: Bunch Amplitudes (Above Sacherer TMCI) 3300 GeV; 1.2·10¹² p/b

Bunch average offset as a function of turn.

Above the TMCI threshold the growth rates are similar for both filling patterns. Synchrotron tune reduces the growth rate as well.

Conclusions and Outlook

Conclusions

- Estimations of impedances of several components
- ✓ Beam screen + collimators lead to TMCI threshold of 5-9·10¹¹
- Multi-bunch simulations indicate that in presence of synchrotron motion coupled bunch instability growth rate in a bunch train reduces
- ✓ Dense train of bunches is more unstable than distributed bunches
- Simulations for long slits, holes, fins with CST Particle Studio lack precision; signal is of the order of noise.

Outlook

- Models for interconnects and other impedance sources (first guess Zbase)
- More precise collimator parameters (gap, material, beta-functions)
- Tools benchmarking (tracking vs DELFI)
- Search for a PhD student to work on 3D impedance code started

Thank you for your attention

11/20/15 | ETIT | Accelerator physics group | Fedor Petrov | 28

Short Summary

Impedances calculated so far with 2D code*

FCC two-slit beam screen

Collimator made of CFC

Collimator + beam screen

Energy	N _{TMCI}	Turns
1.5 GeV	5.6.1011	47
3.3 GeV	9.1011	91

Code by Niedermayer https://goo.gl/Agb6nF

3D CST Particle Studio Simulations

Outlook

either scale known LHC broad-band impedances to FCC conditions (Z-base)
or develop a 3D code for frequency domain

Multi-bunch simulations

- Below TMCI threshold dense train is unstable at the end
- synchrotron motion reduces growth rates compared to cold coasting beam

