

Task 4.3: Mitigate beam-induced vacuum effects (STFC, CERN)

O.B. Malyshev and R. Valizadeh,

ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

EuroCirCol WP4 meeting, Saclay, France 19-20 Nov 2015

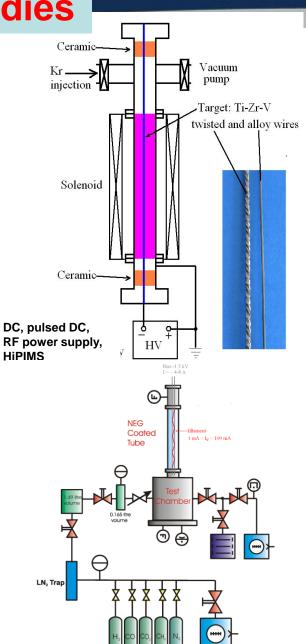
Manpower – Task 4.3

- Oleg Malyshev: 4 year × 3 months = 12 PM
 - Task coordination
 - PhD student supervision
 - Gas dynamics in cryogenic beam pipe, NEG coating and low SEY surfaces development and application
- Reza Valizadeh: 4 year × 3 months = 12 PM
 - PhD student supervision
 - NEG coating and low SEY surfaces development and application
- PhD student 1: 3 year × 12 months = 36 PM
 - NEG coating studies
 - New recruiting, interview in Dec, starting in January 2016, Reg in Loughborough University
- Taaj Sian, PhD student 1: 3 year × 12 months = 36 PM
 - Studies on low SEY surface engineering
 - Started on 1st Oct. 2015, registered at the Manchester University

O.B. Malyshev

NEG coating studies

Room temperature studies



- Jan 2016 Mar 2016 familiarisation with NEG depositions and evaluation facilities
- Apr 2016 Mar 2017

Science & Technology

Facilities Council

- Studying various NEG coatings and their parameters at room temperature:
 - Depositing NEG coating on standard ASTeC sample tubes (ID=38 mm, L=0.5m)
 - Analysing coupons deposited together with tubes with XPS, SEM, XRD.
 - Measuring the ESD as a function of electron dose after activation to 150, 180 and 200 °C, then measuring H₂ and CO sticking probabilities and CO pumping capacity.
- Measuring the ESD and pumping propertied for samples from CERN (if provided)

O.B. Malyshev

Possibility for ESD studies at cryogenic temperatures in ASTeC:

1st PhD student's work:

- Sep 2016 Dec 2016
 - Design of a facility for ESD measurement at cryogenic temperatures
- Dec 2016 Mar 2017
 - procurement of components and building up the facility for ESD measurement at cryogenic temperatures
- Mar 2017 Dec 2018
 - Measuring the ESD (as-received) at cryogenic temperatures
 - Bare surface with and without NEG coating
 - Surfaces with condensed H₂, CH₄, CO and CO₂
 - Effect of unstable temperature
- Temperature cycling of the samples
 O.B. Malyshev
 EuroCirCol WP4 meeting , 19-20 Nov. 2015, CEA, Saclay

What is available:

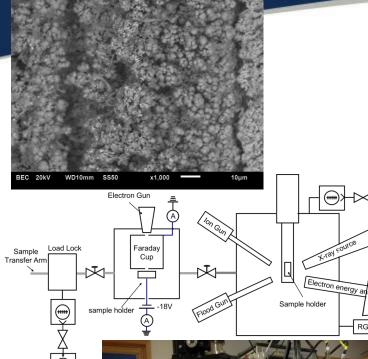
- A cryo-pump compressor and a pump head
 - T ≥ 20 K
 - Max power 10 W at 20 K
- Present ESD facility layout limits:
 - ESD measurements at 10 W: 500 eV × 20 mA
 - Filament heat: ~30 W
 - Can be reduced to 10 W with thinner filament
- Another possibility is using an electron gun:
 - Advantage: no filament heat load on cryogenics
 - Disadvantage: bombardment will be less uniform along the tube

What can be studied in a collaboration using SR

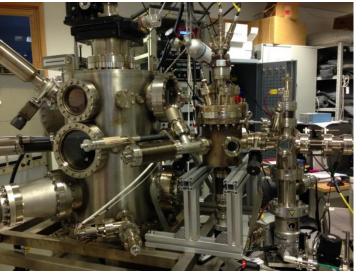
- Continuing studies at room temperature
 - Measure PSD for dense, columnar and dual layer
 - PSD after activation to 150-200 °C
 - Photon induced NEG activation
 - Compare of samples prepared at CERN and ASTeC
- PSD studies at cryogenic temperatures
 - PSD as a function of temperature
 - PSD from cryosorbed gas (H₂, CO, CO₂, CH₄)
 - NEG coated beam screen at various temperatures with a cold bore at 3.5 K
 - Effect of unstable temperature of a beam screen
 - ESD as a function of PSD dose
- Coordination with other WP4 members!
 - Dates, milestones? Available recourses?
 - Sample dimensions? If is it doable on existing deposition facility?

O.B. Malyshev

Use of results for modelling FCC vacuum


- These results can be applied to the FCC beam pipe vacuum modelling
 - Gas density with and without beam (and SR)
 - Ion induced pressure instability
 - ESD due to beam induced electron multipacting

Low SEY studies



Room temperature studies

Science & Technology

Facilities Council

RGA

2nd PhD student's (Taaj Sian) work:

The main emphasis will be on the Laser Induced Micro/Nano Surface Structures (LIMNSS)

- Oct 2015 Sep 2018
 - Studying various LIMNSS obtained with various lasers and their parameters at room temperature:
 - Measuring the SEY (as-received, after electron bombardment, after bakeout, after ion bombardment).
 - Measure surface resistance of LIMNSS
 - Measure ESD and thermal outgassing of selected LIMNSS with low SEY
 - Study the LIMNSS stability to ultrasound (measuring SEY before and after wash)
 - Study the particulates generation
 - Studying selected surfaces obtained by other techniques such as coatings, etching, etc., provided by sample exchange with other WP partners.

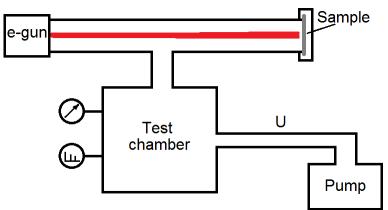
O.B. Malyshev

R_s measurements

A sample placed above a test cavity with a gap of 1-3 mm

Coaxial antenna connected to Vector Network Analyser (VNA) is axially mounted, used to induce and or analyse resonance within the cavity.

• R_s calculated with a formula:


$$\bullet \quad R_S = \frac{\frac{G}{Q_0} - R_c r_C}{r_S}$$

Thermal (TD) and Electron Stimulated Desorption (ESD)

- Thermal outgassing in comparison to untreated surface
 - For example on Cu blank gaskets
 Ø100-200 mm

- ESD on:
 - Cu blank gaskets Ø48 mm

O.B. Malyshev

Possibility for low SEY studies at cryogenic temperatures in ASTeC:

2nd PhD student's work:

- June 2016 Sep 2016
 - Design of a facility for SEY measurement at cryogenic temperatures
- Sep 2016 Dec 2016
 - procurement of components and building up the facility for SEY measurement at cryogenic temperatures
- Jan 2017 Sep 2018
 - Measuring the SEY (as-received) at cryogenic temperatures
 - Bare surface
 - Surface with condensed H₂, CH₄, CO and CO₂
 - SEY in 1.8 T magnetic field
 - Temperature cycling of the samples

What is available:

- A cryogenic head with a compressor:
 - T ≥ 4 K
 - Max power 1 W at 4.2 K

What is required:

- Magnet coil (£7,000):
 - Dry coil has been designed
 - 1.8 T with 30-mm bore diameter
- New e-gun (£30,000)

What else could be studied

- SEY as a function of initial angle α₀
 - requires a modification of an existing SEY measurement (£10,000)

O.B. Malyshev

What can be studied in a collaboration using SR

- Photo-electron emission yield (PEY)
 - PEY at room temperature
 - PEY in a magnetic field
 - Angular distribution (4-6 sectors)
- PSD at room temperature
 - as received
 - after bakeout
- PSD studies at cryogenic temperatures
 - PSD as a function of PSD dose
 - PSD as a function of temperature
 - PSD from cryosorbed gas (H₂, CO, CO₂, CH₄)
 - Effect of unstable temperature of a beam screen
- Coordination with other WP4 members!
 - Dates, milestones? Available recourses?
 - Sample dimensions? If is it doable on existing deposition facility?

O.B. Malyshev