

The ALICE MUON Arm

MFT Meeting @ Hiroshima (Japan) October 5th 2015

CALCER CAL

A. Baldisseri

Outlook

- The present ALICE Muon Spectrometer
 - Physics motivations
 - The setup
 - Physics highlights of Run 1 & Perspectives for Run 2
- The Upgrades
 - Limitations of the present Muon Arm
 - Running the spectrometer in Run 3/4
 - The upgrades of the Muon Arm
 - Physics perspectives for Run 3 (Ginés talk)

Muon Arm Institutes

Armenia: Yerevan ANSL Brazil: Campinas UNICAMP, Sao Paolo IFUSP, Sao Paolo EPUSP France: Clermont-Fd, LPC/Univ. de Clermont-Ferrand, Lyon IPN,Nantes SUBATECH/Ecole des Mines/Univ. de Nantes, Orsay IPN, Saclay CEA-IRFU Hungary: Budapest Institute for Particle Nuclear Physics, India: Kolkata VECC, Kolkata SAHA, AMU, Mumbai Bhabha Atomic Research Centre, Kolkata Bose Institute Italy: Cagliari INFN/Univ. di Cagliari, Torino INFN/Univ. di Torino, Alessandria INFN/Univ. del Piemonte Orientale Korea: Seoul Konkuk University Russia: Dubna JINR, Gatchina PNPI South-Africa: Cape Town UCT, Cape Town iThemba

Physics motivations

- Why HF & Quarkonia are interesting probes?
 - Heavy quarks are produced in the early stage of the collision (hard scattering)
 - They are sensitive to the hot medium formed in the ultrarelativistic HI collision
- Open heavy flavors => Probing the medium by energy loss
 - Mass dependence ($\Delta E_c > \Delta E_b$) => comparison charm/beauty (only possible w/ MFT)
- Quarkonia => Probing the medium by color screening
 - Quarkonia should be suppressed by heavy quark potential screening
 - Recombination due to the high density heavy quarks could play a role
- Low mass => chiral symmetry restauration
 - in-medium modification => rho broadening
- Reference needed: pp collisions
 - Check production mechanisms (pQCD), A-A normalization
- Disentangle «hot effects» from «cold effects»: p-A collisions
 - Initial state effects: Modification of PDFs in nuclei (shadowing), gluon saturation

Time

The ALICE Detector

The ALICE Muon Spectrometer

ALICE

The Muon Tracking

- 10 planes of Cathode Pad Chambers (CPC) arranged in 5 stations
- Stations 1&2 quadrant type (3 pad segm.)
- Stations 3, 4, 5 slats type (3 pad segm.) .
- 156 detection elements, 1.1 M channels
- CPC
 - Gas mixture Ar/CO₂ 80:20, gap 5 mm (4.2 mm St. 1)
 - ▶ Gain of ~10⁴, HV ~ 1650 V
 - \blacktriangleright Spatial resolution of ~100 μm and ϵ ~100%

The Muon Trigger

- 4 planes of 18 single gap Resistive Plate Chambers (RPC) each,
- Arranged in 2 stations
- Total surface ~140 m²
- Readout/FEE channels ~21000
- Trigger electronics: decision and readout

- Trigger decision
 - p_T-based muon selection
 - single muons, unlike-sign, and like-sign muon pairs

RPC

Physics highlights of Run 1 & Perspectives for Run 2

(Today bias: Mostly Pb-Pb @ 2.76 TeV/nucleon, little p-Pb, almost no pp)

ALICE Data sets

- Pb-Pb @ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - ▶ 70 µb⁻¹ in 2011 (20 times less in 2010)
- p-Pb @ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - ▶ 11 nb⁻¹ in 2013 (divided in p-Pb and Pb-p)
- pp @ √s = 7 TeV
 - ▶ 1.35 pb⁻¹ in 2011
- pp @ √s = 2.76 TeV
 - ▶ 20 nb⁻¹ in 2011
- pp @ $\sqrt{s_{NN}} = 8 \text{ TeV}$
 - ▶ 1.3 pb⁻¹ in 2012

(Full luminosity seen by muon triggers)

J/ψ R_{AA} in Pb-Pb

Less suppression compared to RHIC (10 times lower energy) •

TM1: Zhao et al. NPA 859 (2011) 114-125 TM2: Zhou et al. PRC 89 (2014) 054911

- Less suppression at low p_T •
- Recombination should play a role (~100 charm quark pairs in HI central)
- Models including regeneration give satisfactory agreement •

 $J/\psi < p_T^2 >$

Strong energy dependence of r_{AA}

- Transport models work reasonably well
- Considered as recombination signature

Run 2 Higher statistics -> more centrality bins

J/ψ flow in Pb-Pb

- Indication of a non-zero elliptic flow
- CO-onsidered at a signature of the recombination
- At RHIC J/ ψ flow was compatible with zero

X. Zhao et al., Nucl. Phys. A904-A905, 611c (2013) Y. Liu et al., Nucl. Phys. A834, 317c (2010)

$\psi(2S) R_{AA} in Pb-Pb$

- Results are not inconsistent wrt models that describe J/ψ
- Discrimination between statistical and transports models

Heavy flavor decays in muon

- Suppression observed for central collisions
- $p_T > 3$ GeV/c to control the background subtraction
- Models with in-medium energy loss gives the trend

- Positive flow observed
- Models seems to underestimate the data

J/ψ photoproduction in Pb-Pb (hadronic coll.)

arXiv:1506.08804

- Excess observed in peripheral collisions
- Could be from coherent J/ψ photoproduction (like in ultra peripheral collisions)

Low masses in Pb-Pb

MFT Meeting @ Hiroshi

Upsilon RAA in Pb-Pb

- Y Strongly suppressed (more wrt central rapidity)
- Y vs y: rather flat now with CMS new pp reference!

V

A Large Ion Collider Experiment

A Large Ion Collider Experim

Quarkonia in p-Pb

- J/ ψ : Backward (almost) no nuclear effets, forward => suppression @ low p_T
- $\psi(2S)$: More suppressed than J/ ψ . Comover model gives the trend

statistics x 3

Run 2

Upsilon in p-Pb

Y vs models

- J/ ψ and Y similar suppression (within errors bars!)
- Shadowing and/or (coherent) energy loss models overestimate the data

MFT Meeting @ Hiroshima, Oct. 5th 2015

19

- PYTHIA 8 and Percolation (Ferreiro et. al. PRC 86 (2012) 034903) fairly reproduces the data
- Need higher event activity range to disentangle the models

Upgrades: MCH and MID

The Upgraded MUON Spectrometer

- HL-LHC start after the LS2 (mid 2018 to end of 2019)
 - Upgraded Pb-Pb luminosity: L=6 10²⁷ cm⁻²s⁻¹ (50 kHz of int. rate) => DAQ @ 100 kHz
 - Present nominal LHC luminosity in Pb-Pb: L=10²⁷ cm⁻²s⁻¹ (8 kHz of int. rate) => DAQ @ 1 kHz
- Need to upgrade the FEE & readout of MUON Trigger and Tracking
- Add the new Muon Forward Tracker (MFT)

MCH Electronics and readout scheme

- New FEE based on SAMPA chip (1.1 M channels, ~18k boards of 64 ch)
- New e-link data buses (external to detectors for slats, new PCB for quadrants)
- GBT concentrator card (40 x 80 Mb/s inputs, 3.3 Gb/s fiber output): ~500 cards
- Common Readout Unit (CRU) interfaced to the DAQ: ~500 inputs, ~20 boards

The SAMPA chip

- « All-in-one » (analog & digital) 32 ch chip for MCH (38 k) and TPC
- Based on SALTRO architecture, designed in TSMC 130 nm

- Analog (pre-amplifier + shaper), continuous sampling @ 10MHz, 10 bits ADC
- Digital processing (DSP): baseline correction, zero suppression, multi-event buffers, ...
- Continuous or triggered readout, sampling and readout running in parallel
- First MPW1 prototype (~analog) tested

• Next step: Full chip MPW2 (sub. 11/15)

The DualSampa (FEC)

- SAMPA MPW2 (32 channels)
 - MWP2 submission 11/15 => delivery 02/16 (several months of delay wrt original planing)
 - Carrier board for qualification tests (w/ 2 SAMPAs), first schematic diagram done @ Orsay

- DualSampa (32 channels FEC)
 - Design started => we will take advantage of the implementation of MPW2 cards
 - 2 models due to different geometry of Stations 1 and 2 and Stations 3,4 and 5
 - Potential issues: power consumption ~20 mW/ch (1.2 V) wrt ~13 mW/ch presently
 - SAMPA optimisations under study
 - Cooling studies needed (air flow increase sufficient?)

The SOLAR Concentrator Card

- SOLAR board
 - ▶ 1 GBTx, 1 VTRx, 1 SCA
 - ▶ Handle up to 40 DualSAMPA (5 FLEX)
 - Design started
 - First prototype in 2016

• FLEX

- 41 lines per FLEX (reduced vs. TDR)
- Design started
- Prototype ordered @ CERN (Rui lab.)

The Common Readout Unit (CRU)

- Interface detectors data (GBT fibers) to the DAQ (DDL 3 optical link 10 Gb/s)
- Replace the CROCUS data readout concentrator in MCH
- Common to many detectors: MCH, MID, TPC, ...
- Located in the counting rooms (no SEU issues)
- Present design
 - Based on AMC40 card from LHCb
 - Programmable FPGA (can eventually be used for data formatting/compression)

MID Front End Electronics

- Goal: Limit RPC ageing (× 3-5)
- Present FEE without amplification => upgrade with amplification
- Increase of the max. counting rate from ~50 Hz/cm² to ~200 Hz/cm²
- 2384 FEE cards needed (20992 ch)
- R&D program started in 2012
- New ASIC (FEERIC) and FE card
 - ASIC 0.35 µm CMOS technology
 - 8 channels, bi-polarity input
 - Dynamic range from 20 fC < q < 3 pC
 - Resolution <500 ps for q > 100 fC
- Planning
 - LS1 (done) : Equip 1 RPC (/72) in the cavern with 40 FEERIC cards (w/ final ASIC)
 - Run2 : test in realistic conditions (under way) + production
 - LS2 : installation

- FEE: Clermont-Fd / Torino / Korea
- Readout cards: Clermont-Fd
- RPC & Gas system : Torino

FEERIC results

Efficiency

- ▶ Shift by -550 V (thr=130 fC) to -750 V (thr=200 fC) wrt present operating conditions with ADULT 7mV
- Final threshold will depends on background conditions

MID readout electronics

- Muon Trigger hw decision not needed anymore=> Muon Identifier (MID)
- Dead-time free readout up to 100 kHz MB in Pb-Pb
 - x100 above present design
 - Continous readout (improved wrt TDR)
 - Fast (~300 ns) simple (no anymore p_T based) muon trigger decision available
- Replacement of 234 LOCAL and 16 REGIONAL cards
 - 1 CRU in counting room Cavern **Counting room Regional VME-9U crate** GBT CRU_{x1} e-link FE trig, data, ctrl S Region Local **RPC detectors** Reg-trk Loc-trk x16 x1 x16
- Planning
 - 2014-2016 : LOCAL and REGIONAL prototypes
 - 2016-2017 : Production
 - LS2 : Installation

MUON Software Upgrade

- Discussion on Run 3 computing strategy started
 - Part of the ALICE « Conceptual Design Note about Calibration and Reconstruction »
 - Linked with O² working groups 6 & 7
- Basic question: Where do pre-clustering, clustering, tracking, ...
 - In the present software: 80% of the time is devoted to clusteric
 - Expected MUON data rate ~3 GB/s @ 100 kHz

ALICE

• Task force created (~10 people, not all FTE)

• Run 1

- New phenomena: Charmonia recombination (R_{AA} , $< p_T^2 >$, J/ ψ flow)
- First results on $\psi(2S)$, Y, Low masses, Open HF
- Other topics: photoproduced J/ψ (UPC & hadronic), W, ...

• Run 2

- Improved statistics (1nb⁻¹)
- Conclude in many topics (J/ψ flow, J/ψ polarisation, ψ(2S), Y, ...)
- Run 3/4: Ambitious MUON Upgrade w/ MFT
 - Very high statistics for the present channels (10 nb⁻¹) -> very detailed studies
 - Open new physics channels -> Open HF separation, Prompt J/ψ, Low masses, ...
 - Goal: Conclude on the properties of QGP @ LHC

A very exiting program for Run 2 (while preparing the upgrades) Participation in physics analysis are very welcome

Backup

Muon Spectrometer Characteristics

Muon detection	
Polar, azimuthal angle coverage	$171^\circ \le \theta \le 178^\circ, 360^\circ$
Minimum muon momentum	$4 \mathrm{GeV}/c$
Pseudo-rapidity coverage	$-4.0 < \eta < -2.5$
Front absorber	
Longitudinal position (from IP)	$-5030\mathrm{mm} \le z \le -900\mathrm{mm}$
Total thickness (materials)	$(\sim 10 \lambda_{int}, \sim 60 X_0)$ (carbon-concrete–steel)
Dipole magnet	
Nominal magnetic field, field integral	0.67 T, 3 T m
Free gap between poles	2.972-3.956 m
Overall magnet length	4.97 m
Longitudinal position (from IP)	$-z = 9.94 \mathrm{m}$ (centre of the dipole coils)
Tracking chambers	
No. of stations, no. of planes per station	5, 2
Longitudinal position of stations	$-z = 5357, 6860, 9830, 12920, 14221 \mathrm{mm}$
Anode-cathode gap (equal to wire pitch)	2.1 mm for st. 1; 2.5 mm for st. 2–5
Gas mixture	80%Ar/20%CO ₂
Pad size st. 1 (bending plane)	$4.2 \times 6.3, 4.2 \times 12.6, 4.2 \times 25.2 \text{ mm}^2$
Pad size st. 2 (bending plane)	$5 \times 7.5, 5 \times 15, 5 \times 30 \mathrm{mm^2}$
Pad size st. 3, 4 and 5 (bending plane)	$5 \times 25, 5 \times 50, 5 \times 100 \mathrm{mm^2}$
Max. hit dens. st. 1–5 (central Pb-Pb \times 2)	5.0, 2.1, 0.7, 0.5, $0.6 \cdot 10^{-2}$ hits/cm ²
Spatial resolution (bending plane)	$\simeq 70\mu\mathrm{m}$
Tracking electronics	
Total no. of FEE channels	1.08×10^{6}
Shaping amplifier peaking time	1.2µs
Trigger chambers	
No. of stations, no. of planes per station	2, 2
Longitudinal position of stations	$-z = 16120, 17120 \mathrm{mm}$
Total no. of RPCs, total active surface	$72, \sim 140 \mathrm{m}^2$
Gas gap	single, 2mm
Electrode material and resistivity	Bakelite TM , $\rho = 2-8 \times 10^9 \Omega \mathrm{cm}$
Gas mixture	Ar/C ₂ H ₂ F ₄ /i-buthane/SF ₆ (50.5/41.3/7.2/1)
Pitch of readout strips (bending plane)	10.6, 21.2, 42.5 mm (for trigger st. 1)
Max. strip occupancy bend. (non bend.) plane	3%(10%) in central Pb-Pb
Maximum hit rate on RPCs	$3 (40) \text{ Hz/cm}^2 \text{ in Pb-Pb (Ar-Ar)}$
Trigger electronics	
Total no. of FEE channels	2.1×10^{4}
No. of local trigger cards	234+8

2008 JINST 3 S08002