

Muon analysis at Hiroshima University

ALICE MFT meeting at Hiroshima University 05/10/2015 Satoshi Yano (Hiroshima University)

Contents

- Physics motivation
- Muon analysis in LHC15 runs (13 TeV)
- Muon Forward Tracker (MFT) simulation analysis

Physics motivation

- Chiral symmetry restoration in hot medium.
 - Density is almost 0 and temperature is over 300MeV!
 - Chiral symmetry should be restored at LHC!!!
- Dilepton channel is golden channel to study in the medium.
 - Di-electron channel has much background (almost came from pi0)

Imitate SPS-NA60 experiment successful!

M (ĠēُV)

Muon analysis in run2

- Low and middle mass and low p_T physics
 LHC15[g,h] kMUL and kMLL trigger
- Signal extraction
 - Combinatorial background
 - Cocktail method
- Estimate some efficiencies
 - Acceptance x reconstruction efficiency
 - Trigger efficiency
 - Rejection factor

Good run selection & muon track cut

- Period & FileName: LHC15[g,h]/pass1/AliAOD.Muons.root
- Detector:
 - At least [MUON_TRG] as Trigger
 - At least [MUON_TRG & MUON_TRK & SPD] as Readout
- Quality flag:
 - [MUON_TRG & MUON_TRK] Good run
 - [SPD] NOT Bad run
- Duration: > 10 m
- Shuttles:
 - GRP, SPD, MUON_TRG and MUON_TRK: DONE
- |vtx_z| < 10 cm
- Trigger: kMUL || kMLL
- Muon track cut criteria
 - -4.0 < y_µ < -2.5
 - Chi2/ndf < 5.0
 - Match trigger track (track->MatchTrigger())
- Di-muon pair selection criteria
 - -0.4 < $\eta_{\mu\mu}$ < -2.5

R factor

R factor: N₊^{mixed} / 2\sqrt(N^{mix}₊₊N^{mix}₋₋)

Invariant mass (same and scaled mixed event)

Combinatorial distribution can be calculated
Normalization factor: 2R\sqrt(N₊₊N₋)

Invariant mass spectrum (after combinatorial background subtraction)

8

Single simulation for cocktail

- Single particle: AliMUONLMR & AliGenCorrHF
- Installed detector as Read-out
 - MUON
- Installed detector as just material
 - Absorber, Dipole, Hall, MUON, Pipe, Shield, Vzero and FMD
- Detector response
 - Used OCDB
- Primary vertex
 - ITS resolution comes from LHC15g3c pp13TeV MC production for LHC15f runs

Cocktail (very preliminary)

Cocktail (very preliminary)

bb_bar contribution for LMR at 13 TeV

• PYTHIA8 Monash 2013 tunes

bb_bar contribution can be negligible in this region in 13 TeV.

Simulation to estimate some efficiencies

- Single muons simulation
 - AliGenBox (µ⁺µ⁻ each event)
 - -4.5 < y < -2.0 (wider than acceptance)
 - 0 < phi < 360
 - $0 < p_T < 100 \text{ GeV/c}$
- Installed detector as Read-out
 - MUON
- Installed detector as just material
 - Absorber, Dipole, Hall, MUON, Pipe, Shield, Vzero and FMD
- Detector response
 - Used OCDB
- Hiroshima CPU cluster
 - The number of total 200 CPUs
 - OCDBs for these runs have been copied to Hiroshima cluster disk
 - 2 muons x 10,000 events x 35 runs with MUON detector as a read-out and the upper flow detectors as just material simulation takes 3 hours

Tracking efficiency

Tracking efficiency of all chambers

There are very big difference between data and simulation from 229398

Tracking efficiency

• Tracking efficiency of chamber #3

Tracking efficiency

• Tracking efficiency of chamber #5

OCDBs should be updated to simulate detector response correctly.

On going analysis

- Trigger efficiency
 - "Tag and Probe" method with J/psi peak
 - We can estimate it with Triggered data (kMUL)

MFT simulation analysis

- Main goal is same as run2 physics
 - Low and middle mass and low $\ensuremath{p_{T}}$ physics
- Estimate expected yield
 - PbPb @ 2.76 TeV: 10nb⁻¹
- Improve low mass and low p_T measurement

Expected cross-section in PbPb collisions at 2.76 TeV

- Total production
 - $-\sqrt{s_{NN}} = 5.5 \text{ TeV}$
 - Centrality: 0 5%
 - -4.0 < η < -2.5</p>
- Calculated with
 - $-\sqrt{s_{NN}} = 2.76 \text{ TeV results}$
 - PYTHIA8 monash 2013 tune

Expected invariant mass distribution in LMR

cc_bar contribution study

- D masons have been measured in PbPb collisions at 2.76 TeV by ALICE
- To estimate cc→µµ, left measured 2.76 TeV data and simulations, PYTHIA8 and/or HIJING will be used.

– Coming soon!!!

Improve measurement of low $\ensuremath{p_{\mathsf{T}}}$

- To improve,
 - Matching rate of low pT muon
 - S/B of low p_T di-muons
- To improve it, some cuts are tuning now.
 - For example...
 - Tracking chi2/ndf
 - PCA and PCA quality
 - Energy asymmetry of di-muons

Summary and outlook

- Hiroshima contribution to muon analysis has been started
 - Not only real data but also MFT simulation
 - Satoshi Yano (D3) and new B4 students
- Analysis of run2
 - Low mass region meson clear peaks are observed.
 - bb_bar contribution at 13 TeV can be negligible.
 - Tracking efficiency
 - Response of muon chambers have been measured in real data.
 - However, official OCDBs do not reproduce the response.
 - Trigger efficiency
 - Tag and Probe method was used to estimate it with real data.
- Preparation for run3
 - Main goal is very low p_T low and middle mass region mesons and continuum.
 - Low mass region main sources except cc_bar contribution are expected.
 - To improve very low p_T measurement, analysis cuts are studied.

Summary and outlook

- Hiroshima contribution to muon analysis has been started
 - Not only real data but also MFT simulation
 - Satoshi Yano (D3) and new B4 students
- Analysis of run2
 - Low mass region meson clear peaks are observed.
 - bb_bar contribution at 13 TeV can be negligible.
 - Tracking efficiency
 - Response of muon chambers have been measured in real data.
 - However, official OCDBs do not reproduce the response.
 - Trigger efficiency
 - Tag and Probe method was used to estimate it with real data.
- Preparation for run3
 - Main goal is very low p_T low and middle mass region mesons and continuum.
 - Low mass region main sources except cc_bar contribution are expected.
 - To improve very low p_T measurement, analysis cuts are studied.

Hiroshima University has already started to analyze muon data for run2 and run3. We will contribute to Muon system physics actively!

Introduction about so far my analysis

- I finish almost Ph.D student
- So far, I analyze PHOS data to measure neutral mesons

Introduction about so far my analysis

- I finish almost Ph.D student
- So far, I analyze PHOS data to measure neutral mesons

Backup

Check higher mass region

• Upsilon (9.46 GeV/c²)

Muon momentum resolution

• To check muon system condition, J/psi peak was used

Check the simulation with OCDB

• I check the phi distribution in data and simulation

PYTHIA8 Monash 2013 tune

