
Critical fluctuations in models with van der Waals
interactions

Volodymyr Vovchenkoa,b

aFrankfurt Institute for Advanced Studies, University of Frankfurt
bTaras Shevchenko National University of Kiev

In collaboration with
D. Anchishkin, M. Gorenstein, R. Poberezhnyuk, and H. Stoecker

Critical Point and Onset of Deconfinement 2016

Wroclaw, Poland
May 30, 2016

HGS-HIRe
Helmholtz Graduate School for Hadron and Ion Research

Volodymyr Vovchenko (FIAS, Frankfurt & Kiev University) May 30, 2016 1 / 25



Outline

1 Introduction

2 Generalizations of Van der Waals equation
Grand Canonical Ensemble
Quantum statistics

3 Applications
Critical fluctuations
Nuclear matter as VDW gas of nucleons
Interacting pion gas with van der Waals equation
Van der Waals interactions in Hadron Resonance Gas

4 Summary

Volodymyr Vovchenko (FIAS, Frankfurt & Kiev University) May 30, 2016 2 / 25



Van der Waals equation
Van der Waals equation

P(T ,V ,N) =
NT

V − bN
− a

N2

V 2

Formulated in
1873.

Simplest model for 1st order phase
transition and critical point.

Motivation: A toy model to study
QCD critical point

E.-by-e. fluctuations can be used to
study QCD phase transition1

Nobel Prize in
1910.

Two ingredients:
1) Short-range repulsion: particles are hard spheres,

V → V − bN, b = 4
4πr3

3
2) Attractive interactions in mean-field approximation,
P → P − a n2

1Stephanov, Rajagopal, Shuryak, Phys. Rev. D (1999)
Ejiri, Redlich, Karsch, Phys. Lett. B (2005)
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Van der Waals equation

VDW isotherms show irregular behavior below certain temperature TC

Below TC isotherms are corrected by Maxwell’s rule of equal areas
Results in appearance of mixed phase
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p

pC
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nC
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T
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Van der Waals equation

VDW equation is quite successful in describing qualitative features of
liquid-vapour phase transition in classical substances

But can it provide insight on phase transitions in QCD?
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Statistical ensembles
VDW equation originally formulated in canonical ensemble

Canonical ensemble (CE)

System of N particles in fixed volume V exchanges energy with large
reservoir (heat bath)
State variables: T , V , N
Thermodynamic potential – free energy F (T ,V ,N)

All other quantities determined from F (T ,V ,N)

Grand canonical ensemble (GCE)

System of particles in fixed volume V exchanges both energy and
particles with large reservoir (heat bath)
State variables: T , V , µ
N no longer conserved. Chemical potential µ regulates 〈N〉
Pressure P(T , µ) as function of T and µ contains complete information

GCE is more natural for systems with variable number of particles
GCE formulation opens possibilities for new applications in nuclear physics
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How to transform CE pressure P(T ,n) into GCE pressure P(T , µ)?
Calculate µ(T ,V ,N) from standard TD relations
Invert the relation to get N(T ,V , µ) and put it back into P(T ,V ,N)

Consistency due to thermodynamic equivalence of ensembles

Result: transcendental equation for n(T , µ)

N
V
≡ n(T , µ) =

nid(T , µ∗)

1 + b nid(T , µ∗)
, µ∗ = µ − b

n T
1− b n

+ 2a n

Implicit equation in GCE, in CE it was explicit
May have multiple solutions below TC

Choose one with largest pressure – equivalent to Maxwell rule in CE

Advantages of the GCE formulation
1) Hadronic physics applications: number of hadrons usually not conserved.
2) CE cannot describe particle number fluctuations. N-fluctuations in a
small (V � V0) subsystem follow GCE results.
3) Good starting point to include effects of quantum statistics.
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Scaled variance in VDW equation

New application from GCE formulation: particle number fluctuations

Scaled variance is an intensive measure of N-fluctuations

σ2

N
= ω[N] ≡ 〈N

2〉 − 〈N〉2

〈N〉
=

T
n

(
∂n
∂µ

)
T

=
T
n

(
∂2P
∂µ2

)
T

In ideal Boltzmann gas fluctuations are Poissonian and ωid [N] = 1.

ω[N] in VDW gas (pure phases)

ω[N] =

[
1

(1− bn)2 −
2an
T

]−1

Repulsive interactions suppress N-fluctuations
Attractive interactions enhance N-fluctuations

N-fluctuations are useful because they
Carry information about finer details of EoS, e.g. phase transitions
Measurable experimentally
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Scaled variance

ω[N] =
1
9

[
1

(3 − ñ)2 −
ñ

4 T̃

]−1
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V. Vovchenko et al., J. Phys. A 305001, 48 (2015)
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Skewness
Higher-order (non-gaussian) fluctuations are even more sensitive

Skewness: Sσ =
〈(∆N)3〉
σ2 = ω[N] +

T
ω[N]

(
∂ω[N]

∂µ

)
T

asymmetry
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Kurtosis

Kurtosis: κσ2 =
〈(∆N)4〉 − 3 〈(∆N)2〉2

σ2 peakedness
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Kurtosis is negative (flat) above critical point (crossover), positive (peaked)
elsewhere and very sensitive to the proximity of the critical point

V. Vovchenko et al., J. Phys. A 015003, 49 (2016)
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VDW equation with quantum statistics

Nucleon-nucleon potential:
Repulsive core at small distances
Attraction at intermediate distances
Suggestive similarity to VDW
interactions
Could nuclear matter described by VDW
equation?

Original VDW equation is for Boltzmann statistics
Nucleons are fermions, obey Pauli exclusion principle
Unlike for classical fluids, quantum statistics is important

Requirements for VDW equation with quantum statistics

1) Reduce to ideal quantum gas at a = 0 and b = 0
2) Reduce to classical VDW when quantum statistics are negligible
3) s ≥ 0 and s → 0 as T → 0
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VDW equation with quantum statistics in GCE

Ansatz: Take pressure in the following form

p(T , µ) = pid(T , µ∗)− an2, µ∗ = µ− b p − a b n2 + 2an

where pid(T , µ∗) is pressure of ideal quantum gas.

n(T , µ) =

(
∂p
∂µ

)
T

=
nid(T , µ∗)

1 + b nid(T , µ∗)

s(T , µ) =

(
∂p
∂T

)
µ

=
sid(T , µ∗)

1 + b nid(T , µ∗)

ε(T , µ) = Ts + µn − p = [εid(T , µ∗)− an] n

This formulation explicitly satisfies requirements 1-3

Algorithm for GCE

1) Solve system of eqs. for p and n at given (T , µ) (there may be multiple
solutions)
2) Choose the solution with largest pressure
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VDW gas of nucleons: zero temperature

How to fix a and b? For classical fluid usually tied to CP location.
Different approach: Reproduce saturation density and binding energy

From EB ∼= −16 MeV and n = n0 ∼= 0.16 fm−3 at T = p = 0 we obtain:

a ∼= 329 MeV fm3 and b ∼= 3.42 fm3
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VDW gas of nucleons: pressure isotherms

CE pressure

p = pid
[
T , µid

( n
1− bn

,T
)]
− a n2
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Behavior qualitatively same as for Boltzmann case
Mixed phase results from Maxwell construction

Critical point at Tc ∼= 19.7 MeV and nc ∼= 0.07 fm−3

Experimental estimate2: Tc = 17.9± 0.4 MeV, nc = 0.06± 0.01 fm−3

2J.B. Elliot, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)
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VDW gas of nucleons: (T , µ) plane

Density in (T , µ) plane3
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Crossover region at µ < µC
∼= 908 MeV is clearly seen

3V. Vovchenko et al., Phys. Rev. C 91, 064314 (2015)
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VDW gas of nucleons: (T , µ) plane

Density in (T , µ) plane3
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Boltzmann: TC = 28.5 MeV. Fermi statistics important even at CP
3V. Vovchenko et al., Phys. Rev. C 91, 064314 (2015)
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VDW gas of nucleons: scaled variance

Scaled variance in quantum VDW:

ω[N] = ωid(T , µ∗)

[
1

(1− bn)2 −
2an
T

ωid(T , µ∗)

]−1
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VDW gas of nucleons: skewness and kurtosis

Skewness

Sσ = ω[N] +
T
ω[N]

(
∂ω[N]

∂µ

)
T
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Kurtosis

κσ2 = (Sσ)2 + T
(
∂[Sσ]

∂µ

)
T
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For skewness and kurtosis singularity is rather specific: sign depends on the
path of approach

V. Vovchenko et al., Phys. Rev. C 92, 054901 (2015)
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VDW gas of nucleons: skewness and kurtosis

VDW Skewness
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NJL, J.W. Chen et al., PRD 93, 034037 (2016) PQM, V. Skokov, QM2012

Fluctuation patterns in VDW very similar to effective QCD models
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Beam energy dependence of skewness and kurtosis

There are measurements of higher-order cumulants with BES @ RHIC

X. Luo [STAR Collaboration], QM2015

Important to know dependence on centrality and kinematic acceptance
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Strongly intensive measures near CP
Strongly intensive measures (Gorenstein, Gazdzicki, PRC 84, 014904 (2015))

Independent of volume fluctuations, mitigate impact parameter
fluctuations
Can be constructed from moments of two extensive quantities

∆[A,B] = C−1
∆ [〈A〉ω[B]− 〈B〉ω[A]]

Σ[A,B] = C−1
Σ [〈A〉ω[B] + 〈B〉ω[A]− 2(〈AB〉 − 〈A〉〈B〉)]

For most models without PT and CP equal/close to unity
Supposedly show critical behavior, but no model calculation
Used in search for CP, e.g. NA61/SHINE program4

In classical VDW:

∆[E∗,N] = 1 − an(2εid − 3an)

ε2id − ε
2
id

ω[N], Σ[E∗,N] = 1 +
a2n2

ε2id − ε
2
id

ω[N].

Critical behavior in VDW, same as for ω[N] ⇒ ∆,Σ ∼ |τ |−γ

Finite-size scaling: ∆[E∗,N], Σ[E∗,N] ∼ ξγ/ν ∼ Lγ/ν
4Gazdzicki, Seyboth, Acta Phys. Polon. (2015); E. Andronov’s talk at CPOD2016
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Strongly intensive measures in T -µ plane

Non-monotonous
energy/system-size dependence of
∆[E∗,N] and Σ[E∗,N] in
scenario with CP
∆[E∗,N] is more sensitive than
Σ[E∗,N] to proximity of CP
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Strongly intensive measures in T -µ plane
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Pion gas with van der Waals equation
Interacting pion gas as a VDW gas with Bose statistics

VDW parameters: r = 0.3 fm and a/b = 500 MeV

No conserved charges (µ = 0), only temperature dependence
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At some T > T0 there are no solutions!
Van der Waals attraction leads to emergence of limiting temperature
Consequence of GCE and Bose statistics
Suggestive similarity to Hagedorn mass spectrum
Hint of phase transition to new state of matter?

R. Poberezhnyuk et al., arXiv:1508.04585
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VDW interactions in hadron resonance gas
Hadron resonance gas – successful model for low density part of QCD

Gas of hadrons and resonances with eigenvolume VDW interactions

P(T , µ) =
∑

i

P id
i (T , µi−vi P), ni (T , µ) = nid

i (T , µ∗
i )/(1+

∑
i

vi nid
i (T , µ∗

i ))
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Huge sensitivity of fits to VDW
interactions, needs further studies
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Summary

1 Classical VDW equation is transformed to GCE and generalized to
include effects of quantum statistics. New physical applications emerge.

2 VDW equation with Fermi statistics for nucleons is able to describe
properties of symmetric nuclear matter. VDW equation with Bose
statistics for pions shows limiting temperature. Strong effect of VDW
interactions in HRG.

3 Fluctuations are very sensitive to the proximity of the critical point.
Gaseous phase is characterized by positive skewness while liquid phase
corresponds to negative skewness. The crossover region is clearly
characterized by negative kurtosis in VDW model. Role of repulsive
and attractive interactions is clarified.

4 Strongly intensive measures of energy and particle number fluctuations
show critical behavior in vicinity of CP and are suitable for the
experimental study. Critical behavior is same as for the scaled variance,
∆ measure is shown to be more sensitive than Σ.

Thanks for your attention!
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Scaled variance in mixed phase region
Inside the mixed phase:

Vg = ξ V , Vl = (1− ξ) V , F (V ,T ,N) = F (Vg ,T ,Ng) + F (Vl ,T ,Nl )

〈N〉 = 〈Ng〉 + 〈Nl〉 = V [ξng + (1− ξ)nl ]

ω[N] =
ξ0ng

n

[
1

(1− bng)2 −
2ang

T

]−1

+
(1− ξ0)nl

n

[
1

(1− bnl )2 −
2anl

T

]−1

+
(ng − nl )

2 V
n

[
〈ξ2〉 − 〈ξ〉2

]
, ξ0 =

nl − n
nl − ng

In addition to GCE fluctuations in gaseous and liquid phases there are also
fluctuations of volume fractions

W (ξ) = C exp

[
− 1

2T

(
∂2F
∂ξ2

)
ξ=ξ0

(ξ − ξ0)2

]

〈ξ2〉 − 〈ξ〉2 =
T
V

[
ngT

ξ0 (1− bng)2 −
2an2

g

ξ0
+

nlT
(1− ξ0)(1− bnl )2 −

2an2
l

1− ξ0

]−1

Volodymyr Vovchenko (FIAS, Frankfurt & Kiev University) May 30, 2016 25 / 25



χ2 profile at different energies
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χ2 still has a rather complicated non-parabolic structure
Standard statistical methods of extracting the uncertainties become

inapplicable
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