Particle production in nucleus-nucleus and pion-nucleus collisions at $E_{kin} = 0.4 - 2A \text{ GeV}$

Critical Point and Onset of Deconfinement 2016, Wrocław June 2, 2016

Vinzent Steinberg in collaboration with Hannah Petersen, Dima Oliinychenko and Janus Weil

SMASH: A new transport approach

- SMASH: Smashing Many Accelerated Strongly-interacting Hadrons
- Microscopic simulation of hadronic reactions
- Solve relativistic Boltzmann equation for hadron species *i*:

$$p^{\mu}\partial_{\mu}f_{i}(x,p) = C_{\text{coll}}^{i}$$
(1)

- Motivation:
 - Understanding hadronic phase in heavy-ion collisions
 - Modeling non-equilibrium phenomena and microscopic physics
 - Open, maintainable, extensible code

Basic features

- Mesons:
 - $\blacktriangleright \pi, \rho, \eta, \omega, \phi, \sigma, f_2$
 - ► K, K*(892), K*(1410)
- Baryons:
 - ▶ *N*, *N**, up to 2.25 GeV
 - Δ, Δ*, up to 1.95 GeV
 - Λ, Λ*, up to 1.89 GeV
 - Σ, Σ*, up to 1.915 GeV
 - ▶ Ξ, Ω
- $2 \leftrightarrow 2$ and $2 \leftrightarrow 1$ reactions
- Skyrme and symmetry potential
- Fermi motion
- Pauli blocking
- Dileptons

Collision criterion

 Geometric collision criterion (as used by UrQMD) using the transverse distance in c.o.m. frame:

$$d_{\text{trans}} < d_{\text{int}} = \sqrt{\frac{\sigma_{\text{tot}}}{\pi}}$$
(2)
$$d_{\text{trans}}^{2} = (\vec{r}_{a} - \vec{r}_{b})^{2} - \frac{\left((\vec{r}_{a} - \vec{r}_{b})(\vec{p}_{a} - \vec{p}_{b})\right)^{2}}{(\vec{p}_{a} - \vec{p}_{b})^{2}}$$
(3)
$$t_{\text{coll}} = -\frac{(\vec{x}_{a} - \vec{x}_{b})(\vec{v}_{a} - \vec{v}_{b})}{(\vec{v}_{a} - \vec{v}_{b})^{2}}$$
(4)

Not Lorentz invariant

Frame dependence of collision number

Au+Au b=2fm

Skyrme and symmetry potential

$$U = a\frac{\rho}{\rho_0} + b\left(\frac{\rho}{\rho_0}\right)^{\tau} + 2S_{\text{pot}}\frac{\rho_p - \rho_n}{\rho_0}\frac{I_3}{I}$$
(5)
$$H_i = \sqrt{\vec{p}_i^2 + m_i^2} + U(\vec{r}_i)$$
(6)

where

$$a = -209.2 \text{ MeV}$$
 $b = 156.4 \text{ MeV}$ $\tau = 1.35$ $S_{pot} = 18 \text{ MeV}$

• Soft potential with incompressibility $K_0 = 240 \text{ MeV}$

Decay width

Manley-Saleski ansatz for off-shell decay branching ratio:

$$\Gamma_{R \to ab}(m) = \Gamma^{0}_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab}(m_{0})}$$
(7)
$$\rho_{ab}(m) = \int dm_{a}^{2} dm_{b}^{2} \mathcal{A}_{a}(m_{a}^{2}) \mathcal{A}_{b}(m_{b}^{2}) \frac{p_{f}}{m} B_{L}^{2}(p_{f}R) \mathcal{F}_{ab}(m)$$
(8)

• Example: L=1 decay with stable daughters (e.g. $\Delta \rightarrow \pi N$)

$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \left(\frac{p_f}{p_{f0}}\right)^3 \frac{p_{f0}^2 + \Lambda^2}{p_f^2 + \Lambda^2}$$
(9)

Cross sections: theory

▶ $2 \rightarrow 1$ resonance production

$$\sigma_{ab\to R}(s) = \frac{2J_R + 1}{(2J_a + 1)(2J_b + 1)} \mathcal{S}_{ab} \frac{2\pi^2}{p_i^2} \Gamma_{ab\to R}(s) \mathcal{A}(\sqrt{s}) \quad (10)$$

▶ $2 \rightarrow 2$ resonance production

$$\sigma_{ab\to Rc}(s) = C_I^2 \frac{|M|_{ab\to Rc}^2}{64\pi^2 s} \frac{4\pi}{\rho_i} \int dm \mathcal{A}(m) \rho_f$$
(11)

where

$$\mathcal{A}(m) = \frac{1}{\pi} \frac{m\Gamma(m)}{(m^2 - m_0^2)^2 + m^2\Gamma(m)^2}$$
(12)

(Breit-Wigner, no in-medium modifications)

Cross sections compared to data

Cross section fully described via excitation of resonances

Cross sections compared to data

Elastic cross section fitted to PDG data

Detailed balance

Wait until box with limited species is in chemical equilibrium

Detailed balance

Compare number of forward and backward reactions

- Ratio reproduced, but total number overestimated
- Likely due to missing in-medium corrections to cross sections

FOPI rapidity spectra in AuAu at $E_{kin} = 0.8A \,\text{GeV}$

Overestimation consistent with previous plot; correct shape

HADES transverse mass spectra in CC at $E_{kin} = 1A \,\text{GeV}$

Overestimation at high rapidities

HADES transverse mass spectra in CC at $E_{kin} = 2A \,\text{GeV}$

Underestimation at mid rapidity and low m_T

HADES transverse mass spectra vs. UrQMD (1A GeV)

Agakishiev et al, Eur.Phys.J. A40 (2009) 45-59

HADES transverse mass spectra vs. UrQMD (2A GeV)

Agakishiev et al, Eur.Phys.J. A40 (2009) 45-59

HADES pion beam

- ► Upcoming HADES data: $\pi^- C$ (and $\pi^- W$) collisions at $E_{kin} = 1.7 \text{ GeV}$
- Corresponds to $\sqrt{s} \approx 2.1 \text{ GeV}$, requires heavy N^* resonances for $\pi^- p$ cross section (little experimental data on branching ratios)

Pion beam: predicted particle production

Good statistics for strangeness

Predicted reactions in π^-C at $E_{kin} = 1.7 \text{ GeV}$

• Δ^* and N^* produced before Δ ; no equilibrium

HADES transverse mass spectra in π^- C at $E_{kin} = 1.7 \text{ GeV}$

Summary and outlook

- SMASH reproduces experimental pion multiplicities and momentum spectra at low energies fairly well
- Extensible implementation of hadronic transport
- Work in progress:
 - Strangeness
 - String fragmentation
 - Photons
- Future work:
 - Interface to hydro
 - Many-particle interactions, stochastic rates

The SMASH team

Currently:

- Hannah Petersen (group leader)
- Janus Weil, Long-Gang Pang, Juan M. Torres-Rincon (postdocs)
- Dima Oliinychenko, Jean-Bernard Rose, V.S. (PhD students)
- Anna Schäfer, Jan Staudenmeyer, Markus Mayer, Christian Schwarz (master students)
- Niklas Ehlert, Justin Mohs, Ömür Erkiner, Niklas Cichutek (bachelor students)

Previously:

 Max Attems, Jussi Auvinen, Björn Bäuchle, Matthias Kretz, Marcel Lauf