PHENIX Results on Collective Effects in Small Systems

Arkadiy Taranenko

National Research Nuclear University MEPhI

for the PHENIX Collaboration

International Conference on Critical Point and Onset of Deconfinement (CPOD 2016)

Wrocław, Poland, 30.05-4.06/2016

PHENIX Results on Collective Effects in Small Systems

- Physics Motivation
- Experimental details
- Results

- Correlation functions in p/d/³He+Au
- Charged particle v_2 in p/d/³He+Au; v_3 in ³He+Au
- Comparison to models

- Identified particle v_2 in d+Au and ³He+Au
- Outlook for Run 16
- Summary and Conclusions

Collective effects in A+A collisions at RHIC/LHC – signal of sQGP

Collective Effects in Small Systems at LHC and RHIC: p+Pb, d+Au

Long-range correlations: double ridge : CMS, ATLAS, ALICE, PHENIX,STAR

Mass ordering of PID v2 in p+Pb (ALICE,CMS) and d+Au (PHENIX)

Scaling relations: p+Pb vs Pb+Pb: CMS,ATLAS

Multiparticle correlations: CMS, ATLAS, ALICE

Geometry Engineering at RHIC

➢ Different initial geometry → different final state particle emission for p+Au, d+Au and ³He+Au collisions

PHENIX Azimuthal Correlations and v_n Measurements

Phys. Rev. Lett. 115, 142301 (2015)

Phys. Rev. Lett. 114, 192301 (2015)

Preliminary Status

PHENIX Flow Measurements : Methods

PHENIX Flow Measurements : Methods

v2 and 5-12% for v3.

High-multiplicity trigger in BBC

Phys. Rev. Lett. 115, 142301

p+Au: 3.1 billion min. bias events 1.2 billion central events ³He+Au: 2.2 billion min. bias events 0.8 billion central events

- The trigger increase 0-5% most central events by 40 times in p+Au
- The trigger increase 0-5% most central events by 10 times in ³He+Au

Long range correlations in d+Au and p+p

Phys. Rev. Lett. 114, 192301 (2015)

In pp, the distribution is dominated by the dipole term $\cos(\Delta \phi)$, which may due to the momentum conservation

 \Box In dAu, the distribution shows a near side peak

Dijet contribution can't be taken out by subtracting the conditional yield of pp from dAu

□ Dijet contributions to c2 in dAu can be estimated from c2 in pp

Long range correlations in d+Au/³He+Au

Ridges are seen on both Au-going and ³He-going sides

 $|\Delta \eta| > 2.75$: MPC – hadron correlations

Correlation functions in central p+Au

- 2-particle correlation between mid-rapidity tracks and backward (Au-going) charge particles
- Separated by 2.75 units in pseudo-rapidity

v₂ and v₃ in 0-5% ³He+Au: Event Plane Method

Event plane resolution estimated from correlation of three independent sub-events

Estimation of Nonflow

C₂Elementary - due to elementary processes such as dijet fragmentation and resonance decays

Estimate under on assumptions

 All correlations present in minbias p+p collisions are due to elementary processes
Those elementary processes occur in p+Au/d+Au/³He+Au systems as a simple superposition of several nucleon-nucleon collisions.

Estimation of Nonflow

 $C_2(p_T) = C_2^{Non-Elementary} + C_2^{Elementary}$

Nonflow Estimation in p+Au

- Jet contribution (estimated from p+p) rises with p_T and reaches 25%; Cited as a systematic uncertainty
- Working on evaluating different subtraction methods

v_2 and v_3 in 0-5% ³He+Au

A sizeable v₂ and v₃ are observed in 0-5% ³He+Au collisions, extracted by event plane method

The v₂ in 0-5% ³He+Au and 0-5% d+Au collisions are very similar

Comparison with theory calculations

Several models can reproduce the v_n measurements in d+Au and ³He+Au collisions simultaneously

Comparison with central p+Au at 200 GeV

□ The measured v₂ from central p+Au collisions is lower than that of central d+Au and ³He+Au collisions
□ Smaller initial geometry eccentricity → smaller v₂

v₂ in central p+Au/d+Au/³He+Au collisions

v_2/ϵ_2 in central p+Au/d+Au/³He+Au collisions

v₂ of identified charged hadrons in central d+Au/³He+Au collisions

Mass-ordering feature also observed in d/³He+Au

Number of Quark Scaling in central ³He+Au

The familiar behavior of number of quark scaling observed in Au+Au collisions is also seen in the small ³He+Au system

2016: d+Au Beam Energy Scan at RHIC

Summary and Conclusions

- The v_n anisotropies of charged hadrons have been measured in 0-5% central p+Au/d+Au and ³He+Au collisions at 200 GeV via event plane method.
- Sizable v₂ is seen in central p+Au collisions, smaller than in d+Au/³He+Au collisions
- Mass ordering and quark-number scaling of v₂ of identified charged hadrons is seen in central in d+Au and ³He+Au collisions
- The comparison of v_n in different systems, and theoretical calculations, indicates that the initial geometry plays an important role in the small systems' evolution

Backup Slides