Fluctuations of Charges at the Phase Boundary

Kenji Morita

(Yukawa Institute for Theoretical Physics, Kyoto University)

- **1.** Fluctuations of Conserved Charges in Thermal Equilibrium
- 2. Critical Behavior : Baryon number fluctuations Consequence from O(4) and smearing by finite volume and quark mass
- **3.** Electric Charge Fluctuations in π gas and Hadron Resonance Gas Importance of "reference" distribution and role of quantum statistics

CPOD2016@Wroclaw

Kenji Morita (YITP, Kyoto)

"Thermodynamics" in Heavy Ion Collisions

~10fm/c, V= π (5fm)²×(10-100fm)

Fluctuation Studies in Heavy Ion Collisions

~10fm/c, V= π (5fm)²×(10-100fm)

30 May, 2016

CPOD2016@Wroclaw

From Fluctuations to QCD Critical Property

Hadronic observables - information at freeze-out : Determination of T and μ of a <u>subsystem</u> of the hot matter from particle yields / fluctuations

Extracted (T, μ) coincides with the Crossover transition region in QCD Up to $\mu_{B} \sim 400$ MeV

(Remnant) critical property of QCD from fluctuation of conserved charges

Characterizing Fluctuations

QCD Phase Transition / N_B Fluctuations

30 May, 2016

Sign Change of Cumulants

Near TCP, Chiral Limit, Finite V

(Lattice QCD in Strong Coupling Limit, Ichihara, KM, Ohnishi, '15) Baryon number susceptibility, 6³×6

Divergence replaced by sign changes due to finite volume

Skokov, Friman, Redlich, PRC'11

30 May, 2016

Importance of Reference Distribution

Hadron Gas

Divergent : in χ limit or CP **Finite** : cause sign changes in crossover Suppression factor $(\mu_q/T)^n$

 \implies Obscured when $|\chi_n^{\text{regular}}| \gg |\chi_n^{\text{singular}}|$

Remnant of the divergence may only appear as <u>deviation</u> from the regular part contribution

- > Net-Baryon : N, Δ , Hyperon, etc...
 - m >> T,µ Boltzmann Gas Skellam Distribution
- > Net-electric charge : π , K, ρ , p,
 - π and Δ^{++} cause substantial deviation from Skellam
- > Net-strangeness : K, K*, Λ , Σ , Ξ ,
 - Heavy enough, but multi-charged (up to 3!)

Baryon Gas : Skellam Distribution

Expectation (confirmed by lattice): χ_1 and χ_2 are well described by HRG

Deviation from Skellam in higher order χ_n can reflect the phase transition

(Negative) Binomial Distribution?

NB ($\kappa\sigma^2 > 1$), BD($\kappa\sigma^2 < 1$) can fit the critical χ_2 and χ_4 , but cannot reproduce χ_6

Higher (n>4) cumulants necessary to identify the critical fluctuations

Charge Fluctuations in π gas

Pion $m_{\pi} \sim T$: Bose statistics

$$\chi_{n}^{Q} = \begin{cases} \frac{m^{2}}{\pi^{2}T^{2}} \sum_{k=1}^{\infty} k^{n-2} \hat{K}_{2}(km/T) \cosh(k\mu_{Q}/T), & n = \text{even} \\ \frac{m^{2}}{\pi^{2}T^{2}} \sum_{k=1}^{\infty} k^{n-2} \hat{K}_{2}(km/T) \sinh(k\mu_{Q}/T), & n = \text{odd} \\ \hat{K}_{2}(km/T) = \frac{k}{2m^{2}T} \int_{\eta_{\min}}^{\eta_{\max}} d\eta \int_{p_{t_{\min}}}^{p_{t_{\max}}} dp_{t} p_{t} |\mathbf{p}| e^{-kE_{p}/T} \\ = K_{2}(km/T) & (\eta_{\min} = -\infty, \eta_{\max} = \infty, p_{t_{\min}} = 0, \text{ and } p_{t_{\max}} = \infty) \end{cases}$$

- = Multicomponent Boltzmann gas with mass km, <u>charge k</u>, and degeneracy k^{n-4}
- > Leading order : Skellam
- > all k >1 terms : positive
- > *p*-integration range can change χ_n ratio

CPOD2016@Wroclaw

Effect of Low p_t Cut

Karsch, KM, Redlich, PRC '16

Electric Charge Cumulants of a free gas

CPOD2016@Wroclaw

Effect of Low p_t Cut

Karsch, KM, Redlich, PRC '16

Electric Charge Cumulants of a free gas

Substantial decrease from p_{tmin} = 0 to p_{tmin} = 0.2 (STAR) or 0.3 (PHENIX) GeV

M/σ^2 in HRG

M = (π , ρ , etc) + (strange mesons) + (baryons) + (hyperons)

M/σ^2 in HRG : STAR vs PHENIX

$\kappa \sigma^2$ in HRG (prediction)

Concluding Remarks

Higher-order fluctuations of net-B, Q around

phase boundary

- Critical behavior : Smeared by finite V, nonzero m_q
 - Lattice QCD in Strong Coupling Limit
 - Chiral model calculations with FRG
- Deviation from the reference
- net-B : Skellam distribution momentum independent
- net-Q : Bose statistics affected by low pt cut
 - Explaining part of difference btw. STAR and PHENIX

Backup

Effects of Interaction

Charge fluctuations in QM model (N_f=2)

Effects of Interaction

Solution Charge fluctuations in QM model (N_f=2) $\mu_B = \mu_Q = 0$

Effects of Interaction

Solution Charge fluctuations in QM model (N_f=2) $\mu_B = \mu_Q = 0$

CPOD2016@Wroclaw

Kenji Morita (YITP, Kyoto)

Effect of Low p_t Cut

Electric Charge Cumulants of a free gas

Pseudorapidity Cut

No significant dependence on η cut

Difference coming from lower *p*_t cut

$$E_{\min} = \sqrt{p_{t\min}^2 \cosh^2 \eta (=0) + m^2}$$

Lower cut induces effective mass heavier than m, thus approaching Skellam distribution by increasing p_{tmin} . Cuts in η_{max} only affect high momentum particle contribution.

High p Cut Effects on Cumulant Ratios

p_{tmax} < 1GeV : stronger influences from Bose statistics

CPOD2016@Wroclaw

PHENIX

NBD

(d)

10

Data

00

√s_{NN} (GeV)

Electric Charge Fluctuations

Recent measurements @RHIC

STAR('14), PHENIX('15)

Effects of expansion

HRG results found in P. Garg et al., '13

CPOD2016@Wroclaw

Finite Size and Low pt cut

Electric Charge Fluctuations

Complementary to net-baryon

$$\chi_n^Q = \frac{1}{2^n} \left[\chi_n^B + \chi_n^I + \sum_{i=1}^{n-1} {}_n C_i \frac{\partial^n (p\beta^4)}{\partial (\beta\mu_I)^i \partial (\beta\mu_B)^{n-1}} \right]$$

Leading singularity from chiral transition

No "proton≠baryon" problem Larger multiplicity (as π dominates) than net-baryon

Less efficiency, however.