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o Systems at strong coupling exhibit various phase structures

o Pure gluon system — 1°* order phase transition (left)

o Gluons + quarks — smooth crossover (right)
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Phase structure at strong coupling

Real time dynamics is not easy reachable with lattice methods

©

Use other methods to model strongly coupled phase transitions

©

Compute the spectrum of linearized perturbations

©

Compute transport coefficients and non-hydrodynamic modes

Check linear stability

©

©

Method:
Use string theory based methods to formulate models at strong
coupling!
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Questions

o Does spinodal instability appear for a system with a 15% order
phase transition?

o Does dynamical instability has to be accompanied by a
thermodynamical instability?

o How non-hydrodynamic degrees of freedom behave in the
critical region?

o Do diffusive modes appear?

Method:
Use string theory based methods to formulate models at strong
coupling!
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Holography and Quantum Field Theory

o Holographic principle P—
Quantum gravity in d f;‘;a%”mg”%
dimensions must have a Ly = Wy é’b&,
number of DOF which :gﬁ%; S @ggi
scales like that of QFT in “?QQ'@W@@%:
. . Sy M@'@,"’a
d — 1 dimensions N ey
't Hooft and Susskind '93 e
o String Theory realization:
Theory is conformal and supersymmetric Maldacena '97

o Extensions to non-supersymmetric and non-conformal field
theories are possible

o Applications: elementary particle physics and condensed
matter physics
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Classical gravity limit

° LimitN—>ooand)\:g$,MN—>oo

o Lattice simulation for N = 3,4,5,6,8 colours
M. Panero, Phys. Rev. Lett. 103, 232001 (2009)

o Equilibrium state in QFT «<— black hole in dual spacetime
Field theory temperature +— Hawking temperature
Field theory entropy «— Bekenstein-Hawking entropy
E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)
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Black holes and equilibrium states

o Gravity-scalar field model in d =5

1 1 )
S=_—_ /M d°x\/—g {R — 5 (99)" = V(9)

- 2&%
with the potential
V() = —12(1 +a¢*)"/* cosh(y @) + bz &% + by ¢* + be ¢°

o Scalar field generically adds energy scale to the system

o Modeling of some aspects of QCD e.g. equations of state,
meson spectra, colour confinement

U. Gursoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Phase transitions in holography

o Phase structure is determined by the bulk scalar field
interactions quantified by a potential V/(¢)

o It is possible to tune parameters to mimic
— crossover e.g. QCD
— 15 order phase transition e.g. pure gluon systems
— 274 order phase transition

U. Gursoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Linear response and Quasinormal modes

o Perturb the system £ = Lo + h;j03(x)5(t) T (x) the response
is the retarded Green's function

Gr(w, k) o i / dtd®x 0(£)e™ [Ty (x, £), Ti(O)])

o Quasinormal modes, i.e., solutions of linearized fluctuation
equations correspond to poles of holographic retarded Green's
functions. In general

w(k) = Qu(k) — iTa(K)

where n =1,2,3, ... Q,(k)—oscillation frequency,
Im(k)—damping rate. Stable modes have I',(k) > 0.

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)
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Linear response and Quasinormal modes

o Hydrodynamic mode is defined by

li k=20
Jim wr(k)

o The sound mode

i (4n  C\ > 3
KNl=xcck— — [=—+2) k k
w() < 2T<3s+s> +O( )

n—shear viscosity, (—bulk viscosity, s—entropy density,
cs—speed of sound, T—temperature

o In holographic models also non-hydrodynamic modes are
present

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)
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o Holographic model motivated by gluon dynamics

o Transition between black hole and horizon-less geometry
S. W. Hawking, D. N. Page, Commun. Math. Phys. 87, 577 (1983)

o Holographic 1% order phase transition
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o Below T,, no black hole solution exists

o Various lines represent different black hole phases with
different properties
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o Quasinormal modes at T = 1.0277,,

o System displays dynamical instability despite thermodynamical
stability!
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Spinodal instability

©

When c2 < 0 we have purely damped hydro-modes

. i 4n ¢ 2
~ =+ k— — |s-+=>) k
“ fles] 27 <3s s>

so for small enough k we have Im w > 0

()

For a finite range of momenta this mode is present

©

This appears for systems with a 15 order phase transition;
spinodal instability

©

This phenomenon occurs e.g. in nuclear matter

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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The second example

o Transition between two different black hole solutions

o Other example of holographic 15 order phase transition

o As in the previous case there exists minimal temperature T,
o For the unstable region (red-dashed line) we have ¢ < 0
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Holograp
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o Modes for T >~ 1.06 T,,, where c2 ~ —0.1

o Hydrodynamic mode follows the thermodynamic instability

o Non-hydrodynamic modes have weak momentum dependence
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Summary

o Thermodynamic instability — dynamical instability

o Converse seems not to be true!
U. Gursoy, A. Jansen, W. van der Schee, arXiv:1603.07724 [hep-th]

o Non-trivial phase structure limits the applicability of
hydrodynamics

o In most cases non-hydro degrees of freedom have very weak
dependence on k — ,ultralocality”
o Extensions to lower couplings and comparison to kinetic theory
S. Grozdanov, N. Kaplis, A. O. Starinets, arXiv:1605.02173 [hep-th]

o Experimental evidences in cold atoms systems
J. Brewer, P. Romatschke, Phys. Rev. Lett. 115, no. 19, 190404 (2015)

Question:
What is field theory interpretation of non-hydrodynamic
quasinormal modes?
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