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Introduction

In optical lattices the behaviour of contained atoms is governed
mainly by two-body interactions. However, there are experimental
Indications that also three-body interactions should be taken into
account [1, 2]. In this work we present the finite temperature phase
diagram of strongly interacting lattice bosons in the framework of
the Bose-Hubbard model and study its dependence on the three-
body interactions strength. In the calculations we used the mean-
field approximation and the resolvent method, which is based on
the contour integral representation of the partition function [3].

The model

To describe an ultracold gas of bosons in an optical lattice, the
Bose-Hubbard model, which successfully captures Mott-insulator-
superfluid phase transition [4], is utilized. The Hamiltonian in
second-quantized form is given by:
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where:

e (; and &;.f are bosonic creation and annihilation operators at the
-th site of the lattice,

on;, = dj&z- IS the particle number operator,

e J;; is the hopping matrix element,
e /. IS the chemical potential.

The summation index z runs from 1 to NV - the number of the lattice
sites. The V; term contains two- and three-body interactions and is
given by:
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where U and W/ measure two- and three-body repulsive interaction
strength.

The method

To describe the superfluid phase of the system under study we intro-
duce the order parameter &; = (a;). The mean-field approximation
leads to the following Hamiltonian:
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which is the sum of local terms. Since the corresponding statisti-
cal sum Z factorizes, we can omit the index z. One can split the
Hamiltonian into two parts:

PA]O:‘A/—,WAL,

which in the strong coupling regime is considered as the unper-
turbed Hamiltonian and

H — —J2 (a+aT—q>),

which plays role of the perturbation. Next, we express the sta-
tistical sum Z by the resolvent of the full mean-field Hamiltonian
(2 — H)~k:
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which can be expanded in the series:
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Figure 1: The plot of the critical surface separating the disordered (below the surface) and superfluid state (above the
surface) for the Bose-Hubbard model with three-body interaction in the three-dimensional plot defined by the 7" — J
— 1 variables. The three-body interaction parameter was set to W /U = 0.4.

The contour of the integration I" surrounds all singularities of the
resolvent. In our case this expansion is of the form:
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is the partition function of the unperturbed Hamiltonian with energy
levels given by

Ey, = %n(n — 1)+ %n(n —1)(n —2) — un

and
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Due to its complexity, we do not write the fourth order term explicitly.
In the resolvent method the calculation of Z;. terms in the partition
function expansion is divided into two stages:

e Calculation of the trace
e Calculation of the contour integral

Both steps do not require advanced computations, which make the
resolvent method very efficient. The detailed calculations can be
found in [5].

Phase Diagram

In order find the finite temperature phase diagram of the correspond-
ing system, one needs to calculate the free energy f = —1/51n Z.
The expansion of the free energy up to the fourth order of the order
parameter has the form:
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where fp = —1/5 In Zj. In Landau theory, at a point of the phase

transition the coefficient in front of ®2 vanishes, which yields to the
following equation for the critical line:
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Figure 2: Phase diagram of the Bose—Hubbard system showing evolution of the Mott lobes for several values of the
three body interaction W/U = 0, 0.2, 0.4 (panel a, b and c, respectively) in the plane defined by the chemical
potential . and the tunnelling parameter .J (the on-site interaction U serves as an energy scale) for several values of
the temperature (k7/U = 0, 0.1, 0.15, 0.20, curves from the bottom to the top).

The above equation divided by the two-body interaction strength U
defines a hyper-surface in the space of the following parameters:

e The reduced temperature k7" /U and chemical potential /U

e The dimensionless hopping term .J /U and three-body interaction
strength W /U

Figure 1 contains the plot of the critical surface for a fixed value
of the parameter 1¥7. As one can see, the finite temperature di-
lutes the Mott lobes and diminishes the superfluid phase. Figure
2 presents the evolution of the insulating Mott lobes for increas-
Ing temperature and various choices of the three-body interaction
strength 1W/U. As it increases, the subsequent Mott lobes widen.

Conclusions

We have investigated the effect of the three body interactions
on the Bose-Hubbard model using both the mean field approach
to the on-site hopping term and the resolvent method — which
turned out to be very efficient method for calculation of the par-
tition function. Subsequently we have found the phase diagram
and depicted its dependence on various parameters of interest.
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