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Abstract
In this work we apply the Dyson–Schwinger formalism to
investigate QCD’s quark properties, taking advantage of
the fact that within this formalism it is relatively easy
to include finite chemical potential. We employ a rain-
bow truncation scheme and investigate two different an-
sätzes for the dressed gluon propagator. Both of them are
simplifications of the general Maris–Tandy abelian gluon
propagator [1] commonly used along the rainbow trunca-
tion [1][2], with either a dominant IR behavior (Munczek–
Nemirovsky) or averaged interaction strength in momen-
tum space with a hard UV cutoff (NJL). We illustrate the
resulting in–medium mass gap solutions for both models.

Dressed quark propagator eq.(4)

Conclusions
An immediate observation is the lack of momentum depen-
dence in the NJL model, coming from the explicit form of
the solution coefficients

B(p2, p̃4) = m+
16

3m2
G

∫
Λ

d4q

(2π)4
B(q2, q̃4)

~q2 + q̃2
4C

2(q2, q̃4) +B2(q2, q̃4)
(1)

as opposed to those obtained within the MN model, where
the momentum integral can be analytically evaluated

B(p2, p̃4) = m+ η2
B(p2, p̃4)

p̃2A2(p2, p̃4) +B2(p2, p̃4)
(2)

The NJL model shows a clear 1st order phase transition.
MN chiral quark in vacuum exhibits a phase transition
from a massive Nambu–Goldstone phase to a chiraly sym-
metric Wigner–Weyl phase for high momenta. Particular
for this model is a branch cut in the imaginary part of the
effective mass, approximately at 4-momentum

p̃2 =
η2

4
, (3)

a feature which is not present in the standard quasiparticle
picture. The dynamic mass has a rich momentum depen-
dent structure without a strict 0 mass gap solution. We
continue to study this model and calculate thermodynamic
properties at finite temperature and chemical potential.
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Truncation
The expression relating the single flavor quark propagator to other Green’s functions of
QCD (dressed quark propagator) has the form:

S−1(p2, p̃4) = i~γ~p+ iγ4p̃4 +m+

∫
d4q

(2π)4
g2Dρσ(p− q)λα

2
S(q2, q̃4)Γαρ (p, q) (4)

where ~γ~p =
∑3
i=1 γipi, p̃4 = p4 + iµ and {γµ, γν} = 2δµν . The general solution to this

equation has the form

S−1(p2, p̃4) = i~γ~pA(p2, p̃4) + iγ4p̃4C(p2, p̃4) +B(p2, p̃4) (5)

For the dressed-quark-gluon vertex Γαρ (p, q) we have chosen the "rainbow" truncation (i.e.
leading order approximation of the dressed vertex)

Γαρ (p, q) =
λα

2
γσ (6)

In the case of the dressed-gluon propagator, two schemes will be investigated.

Munczek–Nemirovsky model The original idea presented in [4], extended to finite
chemical potential in [5]. The gluon propagator ansatz is

g2Dρσ(k) = 3π4η2δρσδ(4)(k) (7)

NJL-like model Quark contact interaction achieved by modeling the gluon to be a delta
function in configuration space with a hard 3-momentum cutoff to regularize diver-
gent integrals [7]. What follows is a gluon propagator ansatz of the form

g2Dρσ(p− q) =
1

m2
G

Θ(Λ2 − ~q2)δρσ (8)

Results
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Figure 1: Mass and p2 relation for the MN model, chiral limit (left) up and strange quark mass
(center and right respectively)
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Figure 2: MN model, mass and p3 relation (left, thin lines - chiral limit), imaginary mass branch
cut (center) and the positive imaginary branch momentum behavior (right)
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Figure 3: Mass and µ relation for the NJL model (left) and in–medium dynamic mass in the
MN model (right)


