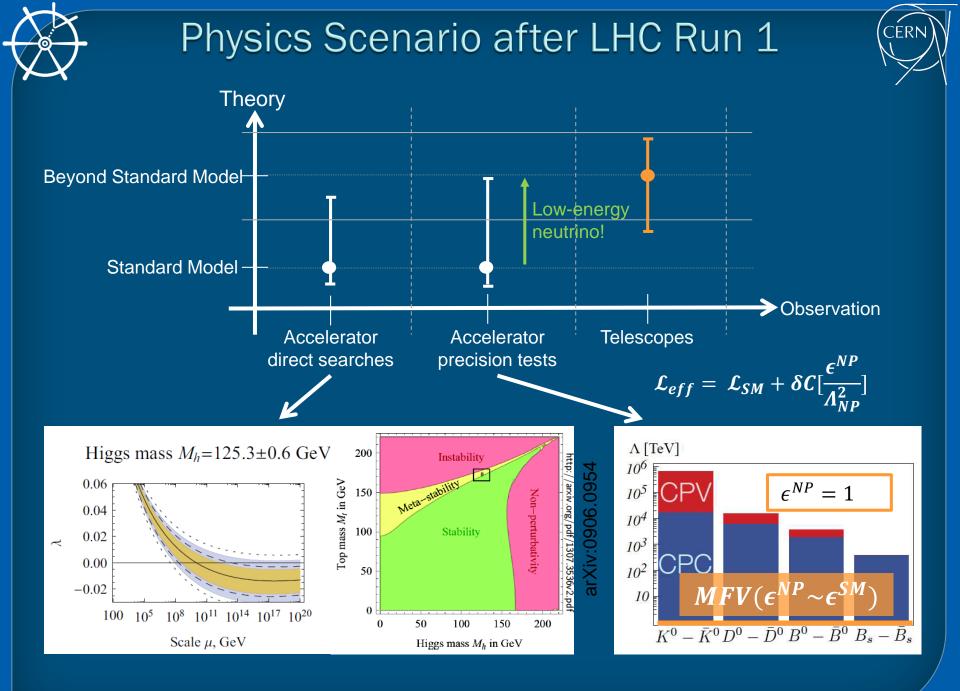


Some concluding slides on LHCb and SHiP

- Two examples of intensity frontier -

Richard Jacobsson


Note: Most of lecture on white board

Big Bang symphony

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_i^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{\nu}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} +$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\mu})$ $W_{\nu}^{-}\partial_{\nu}^{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}^{-}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}) - W_{\mu}^{-}(H\partial_$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\mu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{\mu}}{c_{\mu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - \frac{1}{4}g^2W^+_\mu W^-_\mu[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2W^+_\mu W^-_\mu[H^2 + (\phi^0)^2 + 2\phi^+\phi^-]$ $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}\phi^{-}) - g^{2}\frac{s_{w}}{$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m_e^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \bar{\nu}^{\lambda} - \bar{u}_i^{\lambda} (\gamma \partial + m_i^{\lambda}) u_i^{\lambda} \bar{d}_{j}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)e^{$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \bar{\nu}^{\lambda}]$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})] + (\bar{e}_j^{\kappa}M_{\mu}^{\dagger}M_{\mu}^{\dagger}) + (\bar{e}_j^{\kappa}M_{\mu}^{\dagger}M$ $\gamma^{5}(u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] -$ $\frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_i^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_i^{\kappa}) + \frac{ig}{2M_{\lambda}\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_i^{\kappa}) - m_u^{\kappa}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa})]$ $\gamma^5 u_i^{\kappa} = -\frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{u}_i^{\lambda} u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) \frac{ig}{2} \frac{m_d^2}{M} \phi^0(\bar{d}_i^\lambda \gamma^5 d_i^\lambda) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{M^{2}}{c^{2}}X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0})$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}$) + $igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ + $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Lecture on Intensity Frontier, October 6, 2015

3

Physics Situation after LHC Run 1

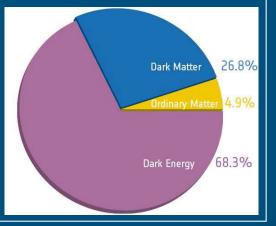
With a mass of the Higgs boson of 125 – 126 GeV, the Standard Model may be a selfconsistent weakly coupled effective field theory up to very high scales (possibly up to the Planck scale) without adding new particles

→ No need for new particles up to Planck scale!?

Experimental evidence for New Physics

- 1. Neutrino oscillations: tiny masses and flavour mixing
 - \rightarrow Requires new degrees of freedom in comparison to SM
- 2. Baryon asymmetry of the Universe
 - → Measurements from BBN and CMB $\eta = \left\langle \frac{n_B}{n_{\gamma}} \right\rangle_{T=3K} \sim \left\langle \frac{n_B n_{\overline{B}}}{n_B + n_{\overline{B}}} \right\rangle_{T \gtrsim 1 \text{ GeV}}$

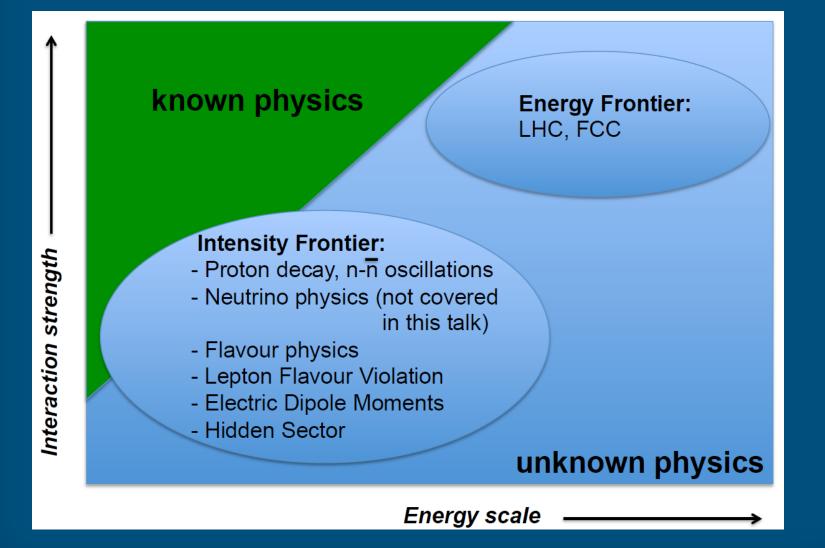
$$(6.3 \pm 0.3) \times 10^{-1}$$


0

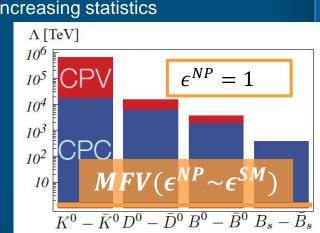
- → Current measured CP violation in quark sector → $\eta \sim 10^{-20}$!!
- 3. Dark Matter from indirect gravitational observations
 - \rightarrow Non-baryonic, neutral and stable or long-lived
- 4. Dark Energy and Inflation

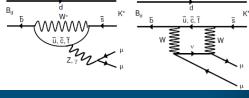
Theoretical "evidence" for New Physics

- 1. Hierarchy problem and stability of Higgs mass
- 2. SM flavour structure
- 3. Strong CP problem
- 4. Unification of coupling constants
- 5. Gravity
- 6. Inflation, etc



Energy – intensity frontier



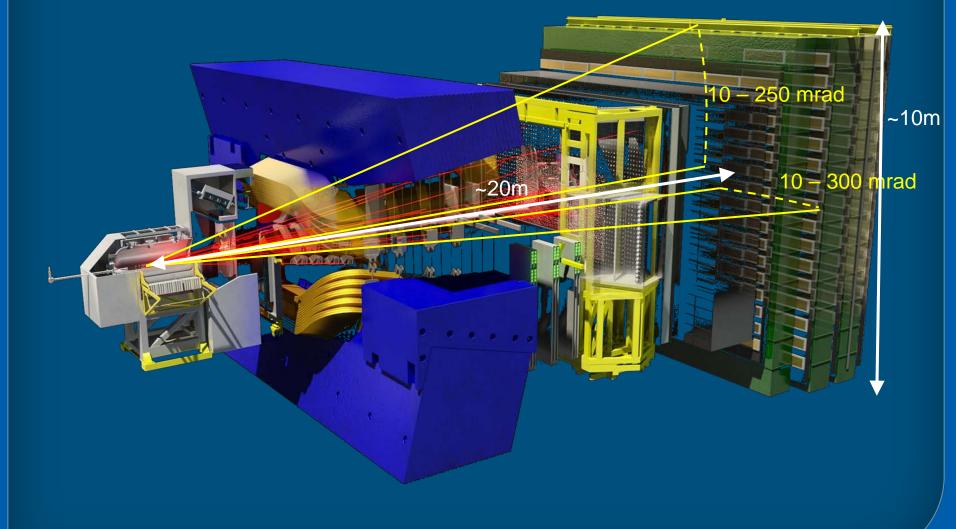

5

In Praise of Precision Measurements

- Precision measurements likely to have the largest discovery potential for new physics
 - Higgs and top precision physics •
 - Flavour precision physics •
 - Complemented by direct searches at high scales AND low scales •
- LHCb focus on measuring *indirect* effects of New Physics in CP violation and rare decays
 - Searching deviations from the SM
 - Virtual effects allow probing energies much higher than E_{cms} of the LHC
- b and c sector contains large repertoire of decays and topologies \odot
 - New Physics may enter differently in boxes and in penguin contributions •
 - → Aim for access to "all" modes
- Upgrade aim: reach experimental sensitivities \leq theoretical uncertainties \odot
 - Not expected to be limited by systematics \rightarrow often improves with increasing statistics •
 - σ_{theory} often decrease with complementary measurements

R. Jacobsson

 $\sigma_{stat+sys+th}$



HCB Precision experiment: LHCb Detector

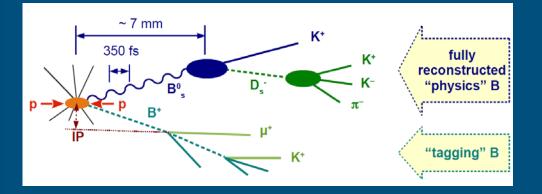
Covers ~4% of the solid angle, but captures ~40% of the heavy quark production cross-section

• Acceptance $2 < \eta < 5$ with entire detector

Key features of LHCb at LHC

CERN

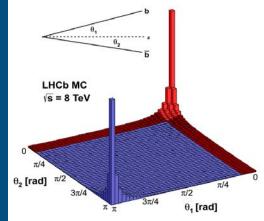
• Large signal cross-sections

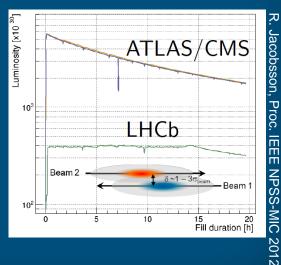

- ▶ >100 kHz \rightarrow 1 MHz of $b\bar{b}$ pairs at LHCb interaction point
- Access to all b-flavored hadrons B_u (~40%), B_d (~40%), B_s (~10%), and B_c , and B-baryons Λ_b (~10%), ... (arXiv:1111.2357v2, arXiv:1301.5286)
- cc production 20x more

• The final state $b\overline{b} / c\overline{c}$ pair are Lorentz boosted

- → The B / D hadrons appear in the same hemisphere
- → Very good proper time resolution

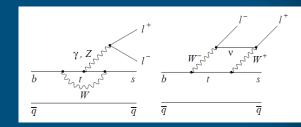
→ Flavor tagging

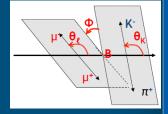

- Same side, uses π or K emitted together with signal B/D hadron
- Opposite side, detects flavor of partner B/D hadron from decay



• Operating at a controllable levelled luminosity

Control detector performance and systematics

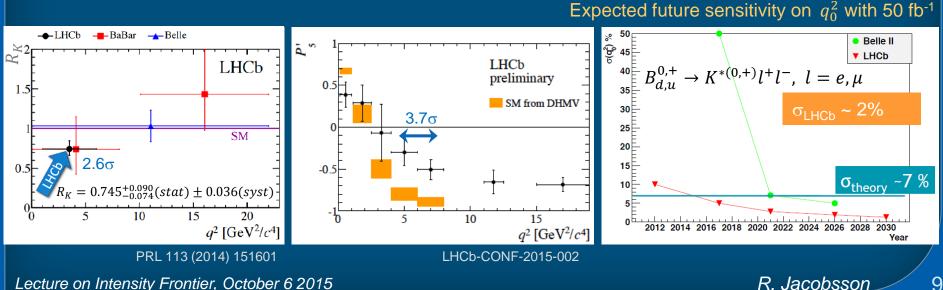

R. Jacobsson


Example of prospects: $b \rightarrow sl^+l^-$

- Electroweak penguin/box diagram sensitive to NP -> Helicity structure \odot
 - $B_d \rightarrow K^* \mu^+ \mu^-, \ B_s \rightarrow \phi \mu^+ \mu^-$
 - 4-body angular analysis as a function of $q^2 = M^2(ll)$

$$\exists .g. A_{FB}(q^2) = \frac{\Gamma(\cos\theta_{Bl} + > 0) - \Gamma(\cos\theta_{Bl} + < 0)}{\Gamma(\cos\theta_{Bl} + > 0) + \Gamma(\cos\theta_{Bl} + < 0)}, A_{FB}(q^2) = 0$$

E.g.
$$A_T^{(2)}(q^2) = \frac{|A_{\perp}(q^2)|^2 - |A_{\parallel}(q^2)|^2}{|A_{\perp}(q^2)|^2 + |A_{\parallel}(q^2)|^2}$$



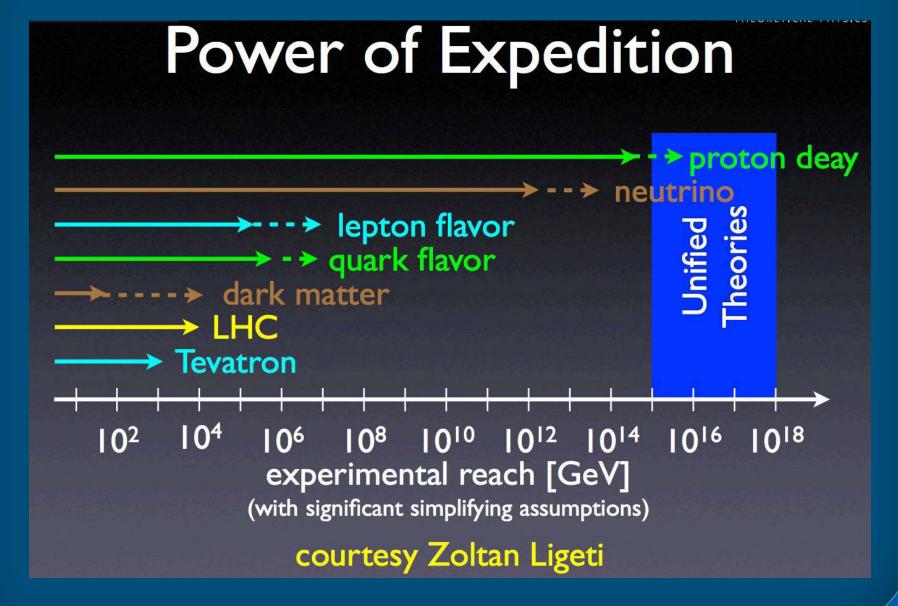
9

FRI

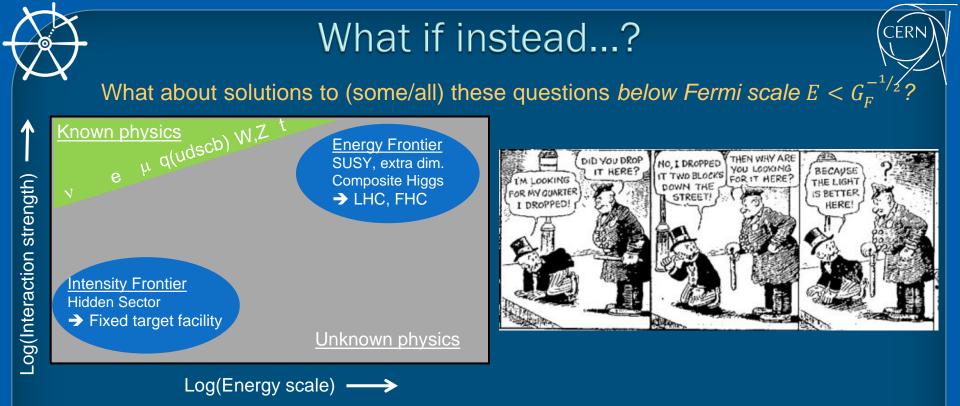
- Currently $b \rightarrow sl^+l^-$ only measurements with some interesting tensions \odot
 - Lepton universality $R_K = \frac{Br(B^+ \to K^+ \mu^+ \mu^-)}{Br(B^+ \to K^+ e^+ e^-)}$ together with P'_5 in the differential decay rate in $B_d \to K^* \mu^+ \mu^-$

Upgrade Physics Prospects

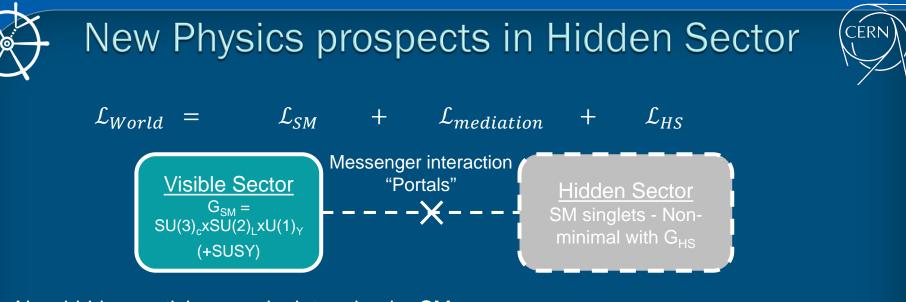
			(
Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory (SM)
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
-	$\phi_s(B^0_s \to J/\psi f_0(980)) \text{ (rad)}$	0.09	0.05	0.016	~ 0.01
	$A_{\rm sl}(B_s^0) \ (10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	0.20	0.13	0.030	< 0.01
currents	$\tau^{\mathrm{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5 \%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.4°	negligible
angles	$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	_
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.12	_


+ a wealth of additional physics

- \rightarrow Diversity and non-spectator effect of the B_c system, and baryons
- → Lepton universality, lepton flavour violation, searches for long-lived "portals"
- Production measurements and spectroscopy, QCD, PDFs, and EW
- ...and quarkonium and Z production in pA and possibly also AA collisions


Precision exploration

Lecture on Intensity Frontier, October 6 2015


11

- Must have very weak couplings → "Light Hidden Sector"
 - Not the first time! Neutrino is QED gauge singlet with SM Portal $(\bar{p}\gamma^{\mu}n)(\bar{e}\gamma_{\mu}\nu)$

• "Intensity Frontier" much less attention recently:

- PS 191: early 1980s
- CHARM: 1980s
- NuTeV: 1990s
- DONUT: late 1990s early 2000

- New hidden particles are singlet under the SM gauge group
- Composite operators (hoping there is not just gravity...) $\mathcal{L}_{mediation} =$

• No knowledge of hidden scale but hidden particles participating in portals may be light

→ Dynamics of Hidden Sector may drive dynamics and anomalies of Visible Sector!

- Dark Matter candidates comes for free stable or unstable and together with other cosmological observations impose powerful constraints
- Two possibilities for Beyond Standard Model:
 - 1. SM + Hidden Sector with light messengers is all there is up to Planck scale no new visible scale
 - 2. Wider theory exist at new energy scale (SUSY, extra dim.,etc) including *inherent* light messengers
 - 3. (or both...)

New Physics prospects in Hidden Sector

CERN

Standard Model portals:

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - → Interaction with 'mirror world' constituting dark matter

• D = 2: Higgs portal

- Mass mixing with dark singlet scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$
- $\begin{pmatrix} H\\h \end{pmatrix} = \begin{pmatrix} \cos\rho & -\sin\rho\\ \sin\rho & \cos\rho \end{pmatrix} \begin{pmatrix} \phi_0'\\S' \end{pmatrix}$

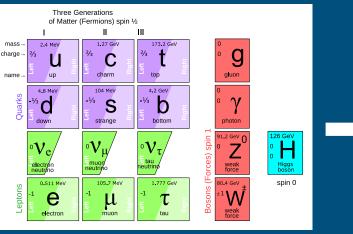
Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

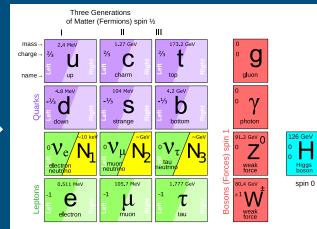
• D = 5/2: Neutrino portal

- Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^{\dagger}\overline{N}L$
- → Neutrino oscillation, baryon asymmetry, dark matter

• D = 4: Axion portal

- Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors : $\frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\partial_{\mu}a}{F}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
- → Solve strong CP problem, Inflaton
- And possibly higher dimensional operator portals and SUper-SYmmetric portals (light neutralino, light sgoldstino,...)
 - → SUSY parameter space explored by LHC
 - → Some of SUSY low-energy parameter space open to complementary searches


New Physics prospects in Hidden Sector


CERN

- Two search methods:
 - 1. "Indirect detection" through portals in (missing mass)
 - 2. "Direct detection" through both portals in and out

- $Y_{I\ell}H^{\dagger}\overline{N}_{I}L_{\ell}$ lepton flavour violating term results in mixing between N_{I} and SM active neutrinos when the Higgs SSB develops the $\langle VEV \rangle = v \sim 246 \ GeV$?
 - → Oscillations in the mass-basis and CP violation
 - → Type I See-Saw with $m^R >> m_D (= Y_{I\ell} v)$

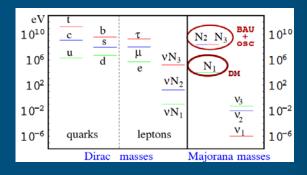
• Four "popular" *N* mass ranges:

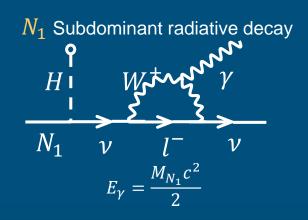
$\frac{10^{-1}}{10^{-10}} \frac{10^{-10}}{10^{-10}} \frac{10^{-10}}{10^{-10}}$	10 ¹⁰⁰ strong coupling 1000 1000 1000 1000 1000 1000 1000 10		N mass	v masses	eV v anoma– lies	BAU	DM	M _H stability	direct search	experi– ment
$\frac{10^{-17}}{10^{-13}} \frac{10^{-7}}{0.1} \frac{0.1}{10^{5}} \frac{10^{11}}{10^{17}} \frac{10^{17}}{10^{17}} \frac{v \text{ MSM}}{GeV} \frac{\text{keV}}{\text{GeV}} \frac{\text{YES}}{\text{YES}} \text{YES$				YES	NO	YES	NO	NO	NO	-
$\frac{10^{-17}}{10^{-13}} \frac{10^{-7}}{0.1} \frac{0.1}{10^{5}} \frac{10^{11}}{10^{17}} \frac{10^{17}}{10^{17}} \frac{v \text{ MSM}}{GeV} \frac{\text{keV}}{\text{GeV}} \frac{\text{YES}}{\text{YES}} \text{YES$	neutrino masses are too small,	EWSB	10 GeV	YES	NO	YES	NO	YES	YES	LHC
	10-17	v MSM		YES	NO	YES	YES	YES	YES	a'la CHARM
LSND1VMSM1LHCGUTI see-sawVeVYESYESNONOYESYESa'laMajorana mass, GeVscaleeVscaleeVYESYESNONOYESYESa'la	LSND VMSM LHC GUT see-saw Majorana mass, GeV		eV	YES	YES	NO	NO	YES	YES	a'la LSND

v:1204.5379

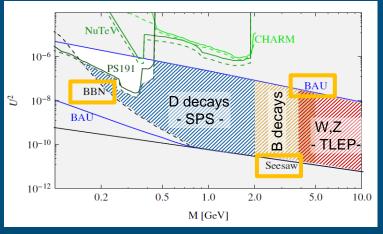
CERN

16

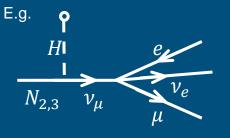

Role of N_1 with a mass of $\mathcal{O}(\text{keV})$ \rightarrow Dark Matter

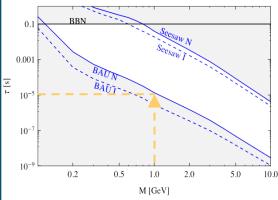

Role of N_2 and N_3 with a mass of $\mathcal{O}(m_q/m_{l^{\pm}})$ (100 MeV – GeV): → Neutrino oscillations and mass, and BAU

→ Assumption that N_l are $\mathcal{O}(m_q/m_l)$: No new energy scale!


$$Y_{I\ell} = \mathcal{O}\left(\frac{\sqrt{m_{atm}m_{I}^{R}}}{v}\right) \sim 10^{-8} \ (m^{R} = 1 \ GeV, m_{v} = 0.05 \ eV)$$

• $\mathcal{U}^2 \sim 10^{-11}$ \rightarrow Intensity Frontier!


Current limits on N_2 and N_3



HNL production and decay

Predominant production in mixing with active neutrino from leptonic/semi-leptonic weak decays of heavy mesons

- $\begin{array}{ll} & D_{s} \rightarrow lN, \ (\tau \rightarrow X\nu_{\tau}) & U_{e,\mu,\tau}^{2} \ \text{and} \ N_{N} \leq M(D_{s}) m_{l}, \ (N_{N} \leq M(\tau) M(X)) \\ & D \rightarrow lKN & U_{e,\mu}^{2} \ \text{and} \ N_{N} \leq M(D_{s}) m_{l} \\ & B_{(s)} \rightarrow D_{(s)}lN & U_{e,\mu,\tau}^{2} \ \text{and} \ N_{N} \leq M(B_{(s)}) M(D_{(s))} m_{l} & D_{s} \\ & B \rightarrow lN \ (B \rightarrow l\pi N) & U_{e,\mu,\tau}^{2} \ \text{and} \ N_{N} \leq M(B) m_{l} \quad , Br \propto V_{ub}^{2}/V_{cb}^{2} \\ & \rightarrow \text{Branching ratios} \ \mathcal{O}(10^{-7} 10^{-8}) \end{array}$
- Very weak HNL-active neutrino mixing $\rightarrow N_{2,3}$ much longer lived than SM particles \rightarrow Typical lifetimes > 10 µs for $M_{N_{2,3}} \sim 1 \text{ GeV} \rightarrow$ Decay distance O(km)
- Decay modes
 - $N \rightarrow h^0 \nu$, with $h^0 = \pi^0, \rho^0, \eta^-, \eta^\prime$
 - $N \rightarrow h^{\pm} l^{\mp}$, with $h^{\pm} = \pi^{\pm}, \rho^{\pm}$
 - $N \rightarrow 3\nu$
 - $N \rightarrow l^{\pm} l^{\mp} v$

N2,3

Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^-/e^- + \rho^+$	0.5 - 20 %
$N_{2,3} \rightarrow v + \mu + e$	1 - 10 %

 Total rate depend on U² = ∑_{I=2,3} |U_{ℓI}|² ℓ=e,µ,τ
 → Relation between U_e², U_µ² and U_τ² depends on flavour mixing

HS common experimental features

- → Hidden particle production through hadron decays (π , K, D, B), proton bremsstrahlung,...
- → Hidden particle decays

 \odot

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm} ho^{\mp}, ho^{\pm} ightarrow \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^- u$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

→ Full reconstruction and particle ID aim at maximizing the model independence

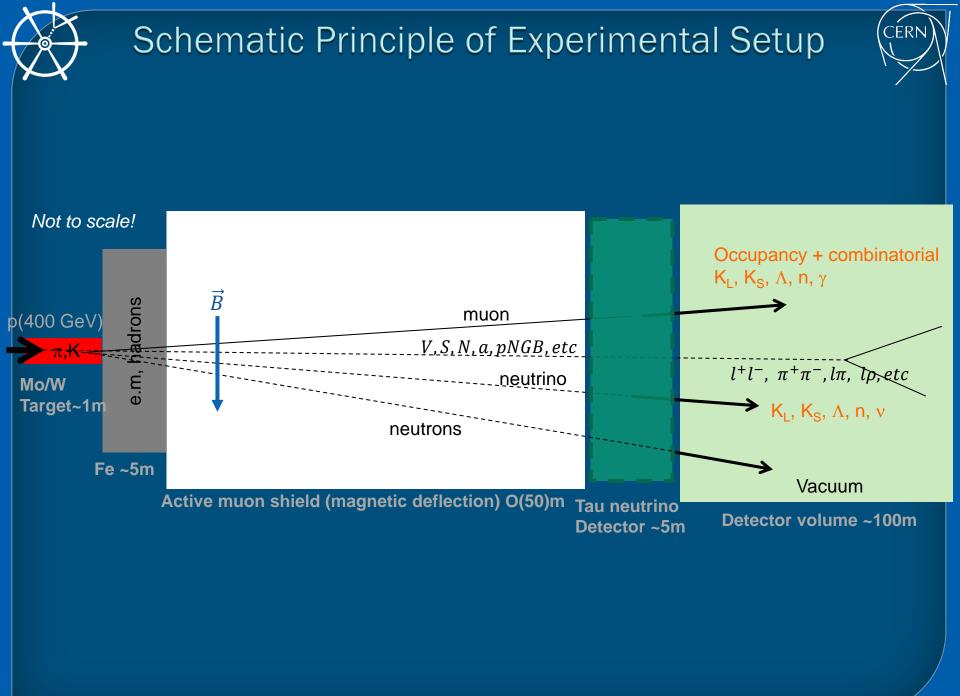
Production and decay rates are very suppressed relative to SM

- Production branching ratios $O(10^{-10})$
- Long-lived objects
- Travel unperturbed through *ordinary* matter
- Challenge is background suppression > requires extremely careful estimation

Fixed-target ("beam-dump") experiment with large decay volume

→ Side benefit: Optimizing for heavy meson decays also optimizes facility for $v_{\tau}(v_e, v_{\mu})$ physics

•
$$Br(D_s \rightarrow \tau + \nu_{\tau}) \sim 5.6\% : 10^{15}$$



SHiP: Experimental Requirements

Proposal: fixed-target (beam dump like) experiment at the SPS

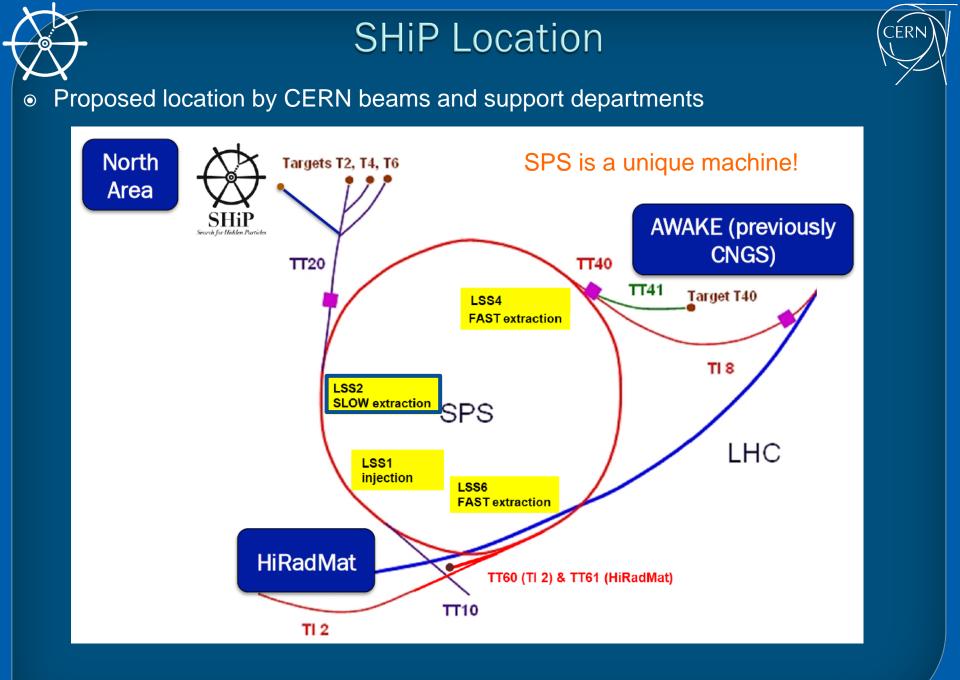
- 1. Superweakly interacting new particles → Number of protons on target → SPS: $4x10^{13} / 7s @ 400 \text{ GeV} = 500 \text{ kW}$ → $2x10^{20}$ in 5 years
- 2. Preference for slow beam extraction of 1s to reduce detector occupancy
- 3. Heavy material target
- 4. Muon shield to range out flux of muons
- 5. Away from walls and minimize surrounding structures
- 7. Vacuum in particle decay volume
- 8. Detector as close as possible to target to maximize acceptance
- → Defines the list of critical parameters and layout of the experiment

.....

A reality view of SHiP

-150 m

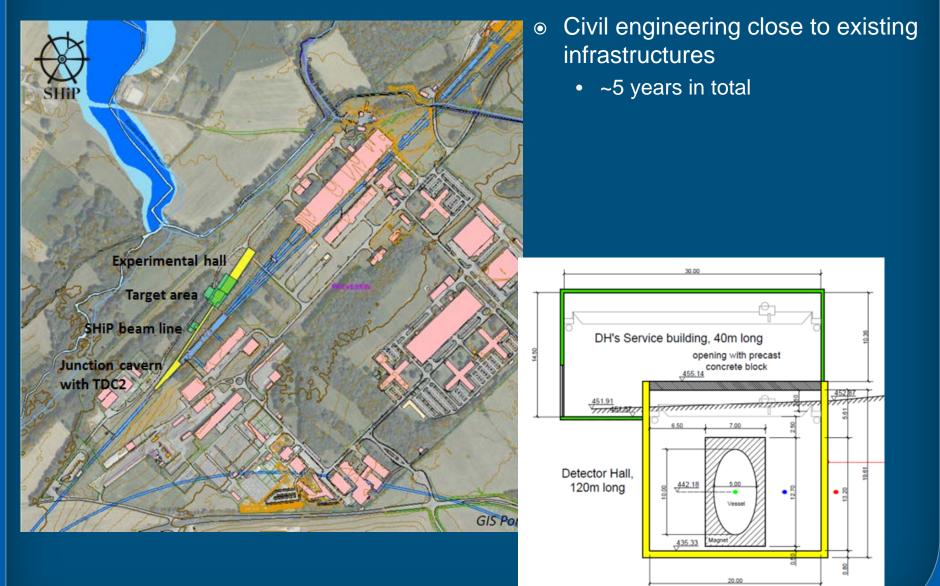
 v_{τ} detector


2 D

Hidden Sector decay volume Spectrometer Particle ID

Active muon shield

Target/ hadron absorber



SHiP Facility at Prevessin North Area

