

Top Quark at ATLAS

Muhammad Alhroob

06.10.2015

The Standard Model

Spin-1/2 particles called fermions:

- Quarks
 - electric charge 2/3e or -1/3e
 - three colours
- Leptons:
 - neutrinos, electrically neutral
 - charged leptons

Open Questions

- Three particle generations?
- Neutrino mass
- Mass hierarchy, eV scale to ~173 GeV.
- Matter antimatter asymmetry?
- Gravity
- Dark matter and dark energy

Extensions to SM try to answer one or more of these questions by:

- New particles
- New symmetries
- Extra dimensions
- String theory

The Large Hadron Collider

- 27 km circumference
- Proton-proton collider
- Operational since 2010
 - in 2011 $\sqrt{s} = 7$ TeV
 - in 2012 $\sqrt{s} = 8$ TeV
 - in 2015 $\sqrt{s} = 13$ TeV

Top-quark production at LHC

- The heaviest fundamental particle
- It decays very fast before it hadronize
- Top quark can be produced in SM:
 - in pairs through strong interaction
 - singly associated to other particles through weak interaction

• $M_{top} = 173.3 \pm 0.9 \text{ GeV}$

• Life-time ~ 10^{-25} s

• Decays to bW
$$\sim 100\%$$

Top Anti-Top Quark Cross Section

- Cross section goes up with energy?!
- At low energy proton antiproton produce more top quarks!
- Many things we should get right before we have an agreement between theory and experiment

Single Top Quark Production

• Three production channels:

Single Top Quark Cross Section

Parton Distribution Function

 $x_1 x_2 . s = M^2$ $\sqrt{s} = 7, 8, 13, 14 \text{ TeV}$

Rare Top Quark Production Processes: FCNC in strong sector

- Motivation:
 - Experimental
 - Theoretical (predicted excess depends highly on model; 5-8 orders)?

Example of FCNC processes

Probe the coupling between the top quark and light quarks+gluon

Searching for FCNC in top quark decay is challenging:

- limited by tt production cross-section and low branching fraction
- very difficult to separate from the multijet background

Top quark production via FCNC:

- higher cross-section
- no associated production
 - the top quark has very low P_T compared with SM top quarks

Event selection

- Lepton selection (electron / muon):
- Missing transverse momentum
- One Jets (identified as a b-jet)

Dominant backgrounds:

Event yields

arXiv:1509.00294

Process	Control region	Signal region
Single top	7930 ± 250	8580 ± 260
$t\bar{t}$	6290 ± 170	6870 ± 180
W+LF	410100 ± 8200	$4\ 100 \pm 1\ 100$
W+HF	340800 ± 4700	38000 ± 1600
Z+jets	38800 ± 1500	3570 ± 280
Multi-jet	32100 ± 5500	4970 ± 840
Total expected	836000 ± 11000	66100 ± 2200
Data	826 517	66 305

Pixel detector is very important in identify b quark jets

Neural Network

Muhammad Alhroob

Input variables

arXiv:1509.00294

Signal signature:

- P_T (top) ~ 0
 (W and b are back-to-back)
- P(W) is large
- More top than anti-top quarks

17

NN Output

18

Systematic uncertainties

- Type of systematic uncertainties:
 - rate systematic uncertainties of each background processes
 - shape systematics which affects the signal and background templates

Results from collision data

No signal is observed and an upper limit at 95% C.L. is calculated

Muhammad Alhroob

Summary

• Top quark play an important rule in search for new physics

 Understanding the proton structure plays a key rule in measuring the cross section

 The ATLAS inner detector is critical in identifying the short lived particles

Do not forget the importance of the detector and physics Simulations!