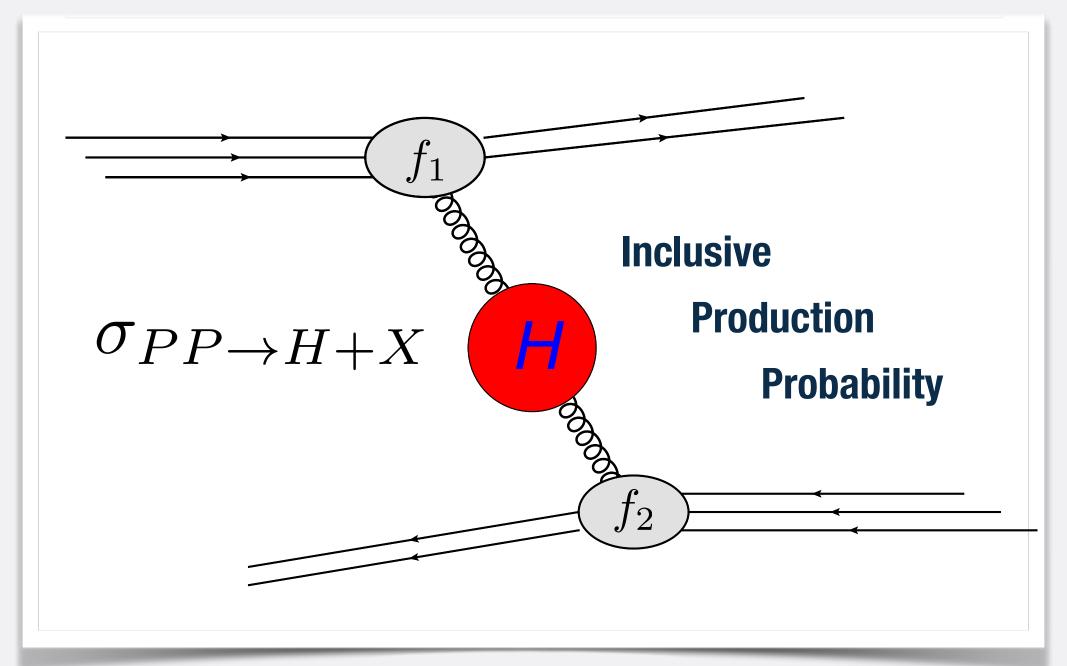
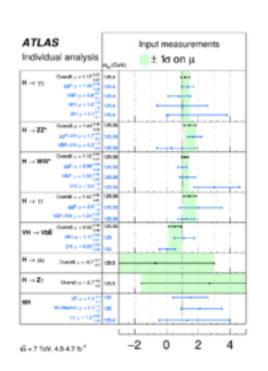
$PP \to H + X$

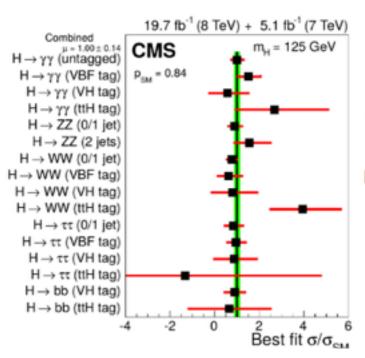
Precision Predictions at N3L0 for Inclusive Higgs Production

Bernhard Mistlberger

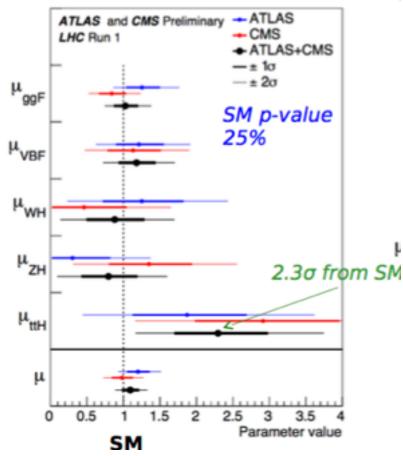
In collaboration with Babis Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Thomas Gehrmann, Franz Herzog, Achilleas Lazopoulos





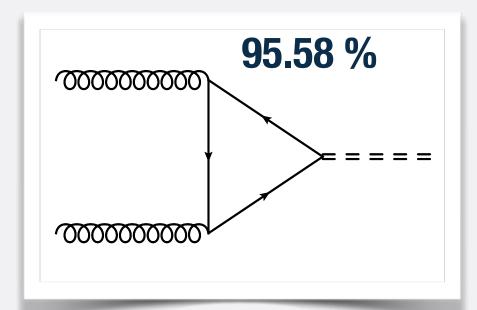


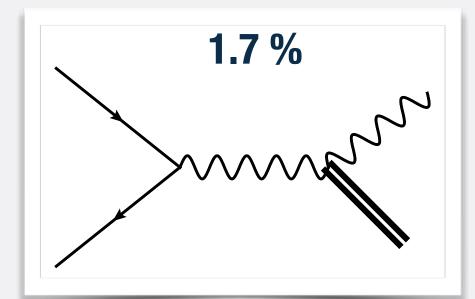
Production signal strengths (SM values of BRs assumed)

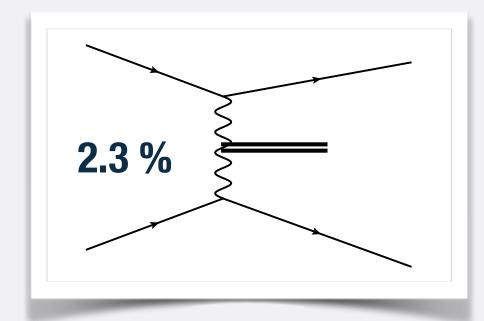


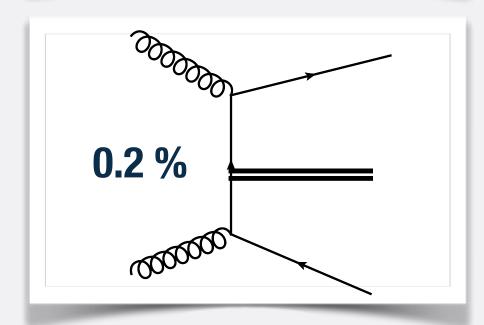
$$\mu = 1.09^{+0.11}_{-0.10}$$

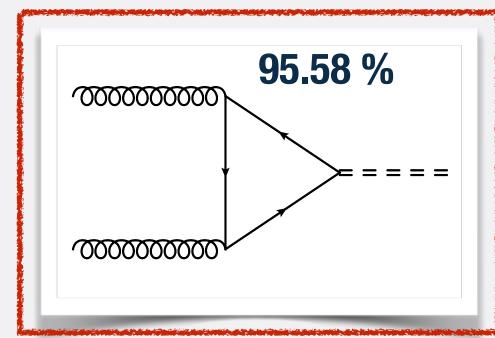
=
$$1.09^{+0.07}_{-0.07}$$
 (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig)

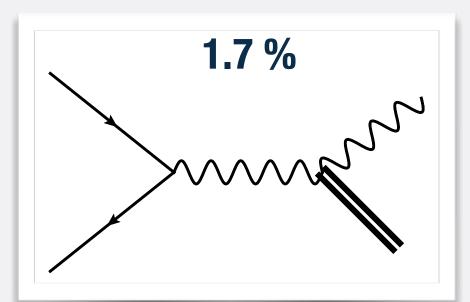


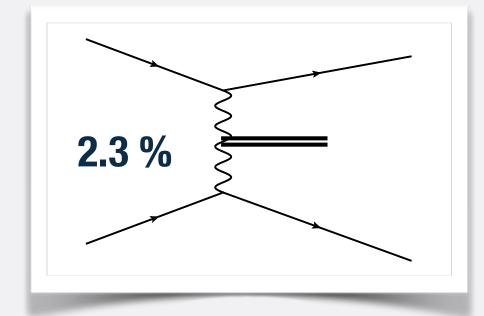


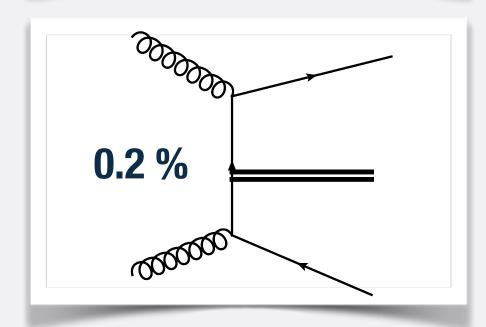












Dominant Mechanism: Gluon Fusion

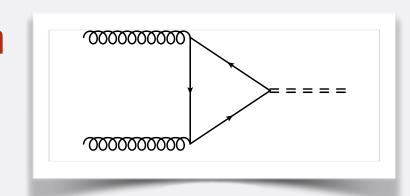
Top-Quark coupling

Gateway to NP

Key ingredient for SM couplings

Ingredients:

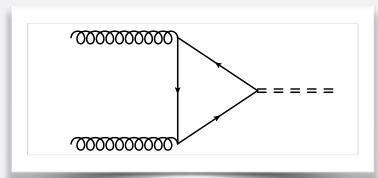
- PDF
- QCD
- Electro-Weak

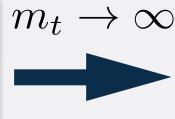


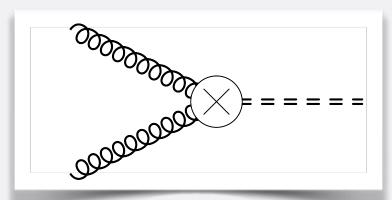
EFFECTIVE THEORY

EFFECTIVE THEORY

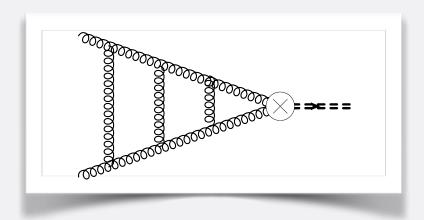
QCD - Effective Theory







Current Status: N3L0



[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, BM]

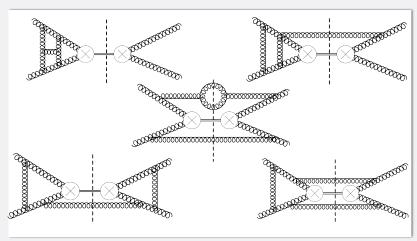
Current Status: N3L0

$$\hat{\sigma}(z) = \hat{\sigma}^{LO}(z) + \alpha_S \hat{\sigma}^{NLO}(z) + \alpha_S^2 \hat{\sigma}^{NNLO}(z) + \alpha_S^3 \hat{\sigma}^{N3LO}(z) + \mathcal{O}(\alpha_S^4)$$

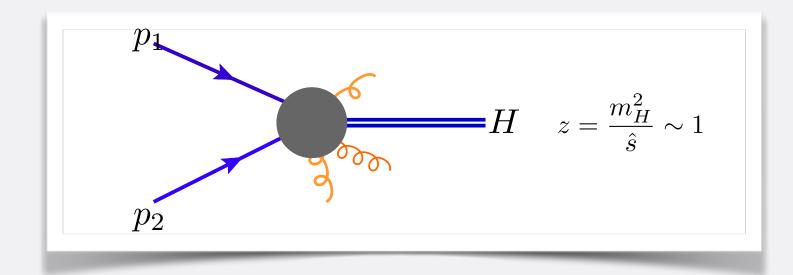
Fully analytic formula

$$\sigma = \sum \int dx_1 dx_2 f(x_1) f(x_2) \hat{\sigma}(x_1 x_2)$$

First Hadron Collider Observable at this order in QCD



THRESHOLD EXPANSION



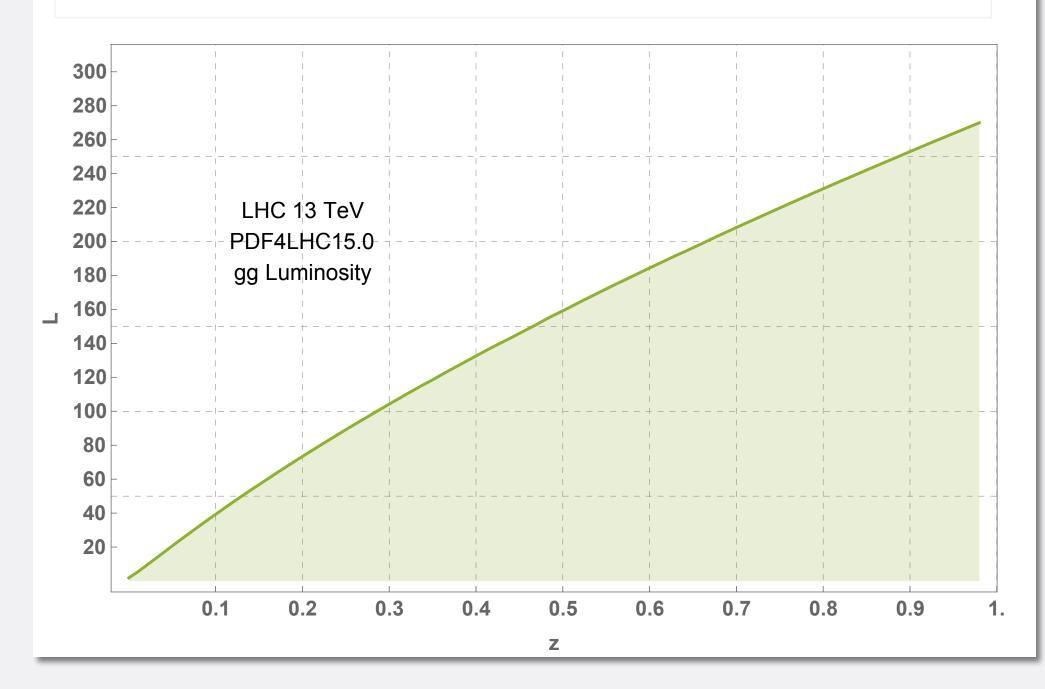
Expansion around the production threshold

$$\bar{z} = 1 - z$$

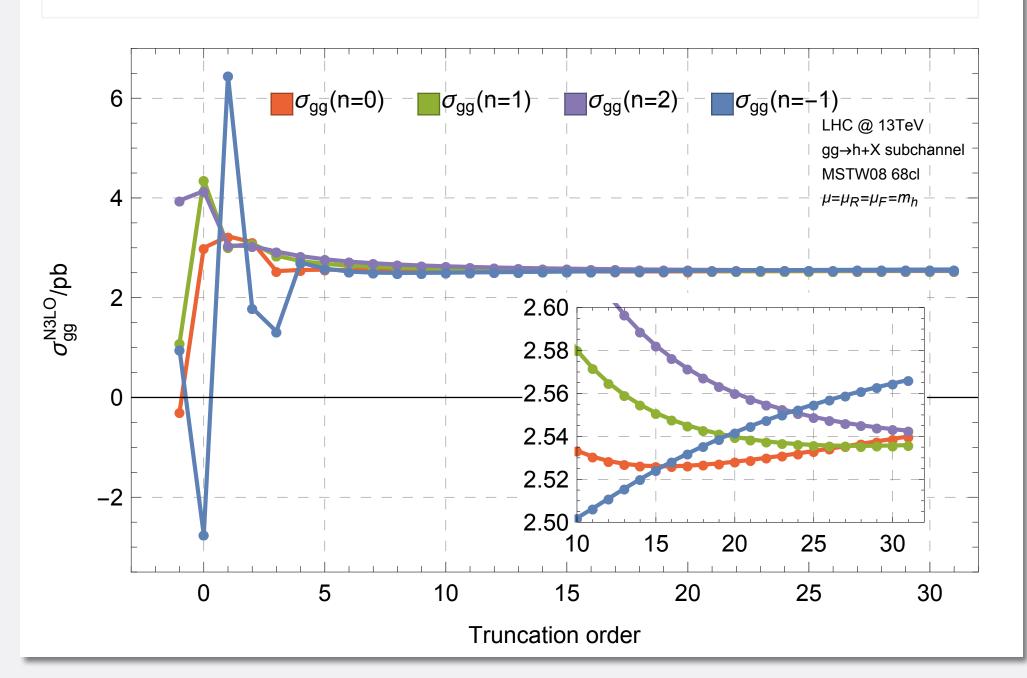
$$\hat{\sigma}(\bar{z}) = \sigma^{SV} + \sigma^{(0)} + \bar{z}\sigma^{(1)} + \dots$$

Why is that a good idea? Gluon Luminosity

LUMINOSITY



THRESHOLD EXPANSION



ESTIMATING UNCERTAINTY

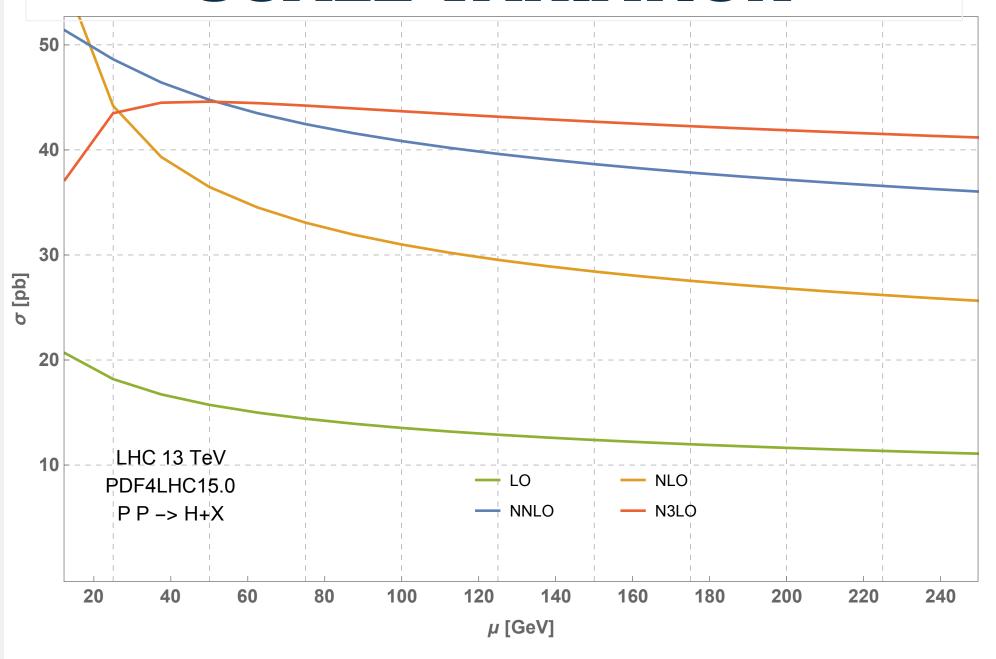
Look at the progression of the series!

One way of estimating higher order uncertainties

Scale Variation

$$\mu_{central}=rac{m_h}{2}$$
 vary $\mu\in\left[rac{m_h}{4},m_h
ight]$

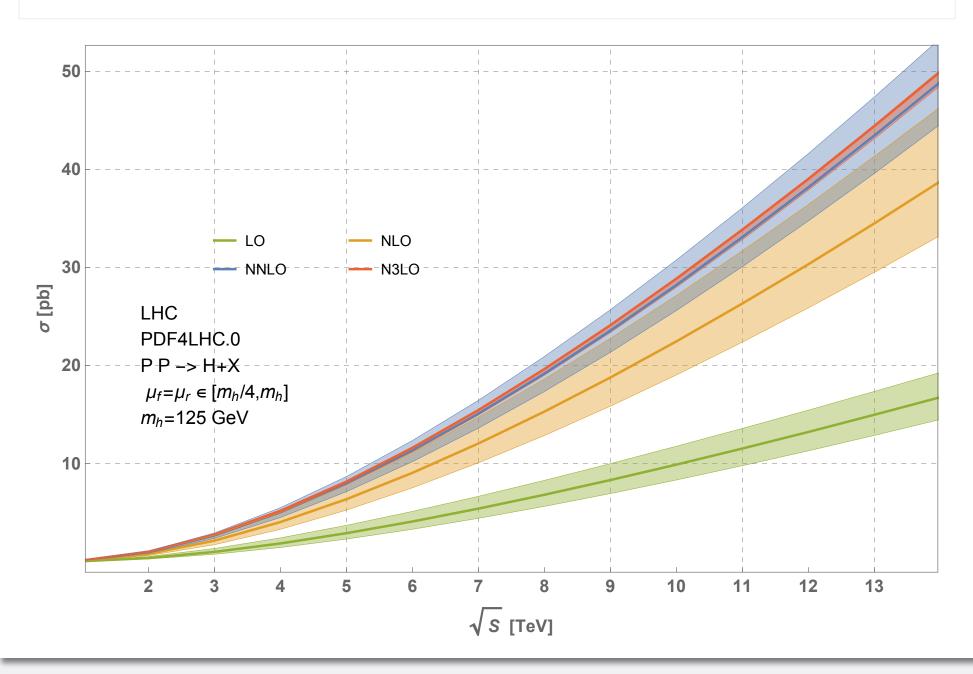
 $\delta\mu$ from maximum and minimum of variation



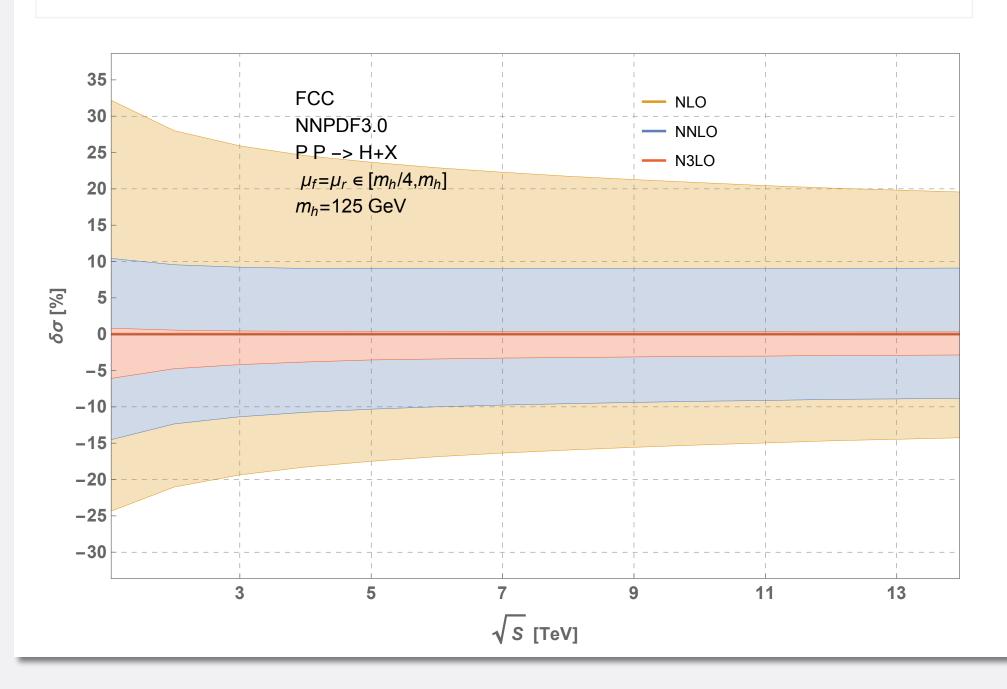
	$\sigma_{PP\to H+X}^{eff}[pb]$	$\delta_{\mu} [\%]$
LO	15.0	$ \begin{array}{c c} 15.9 \\ -14.0 \end{array} $
NLO	34.5	$ \begin{array}{c c} 19.8 \\ -14.5 \end{array} $
NNLO	43.5	$ \begin{array}{c c} 9.1 \\ -8.9 \end{array} $
N^3LO	44.6	$0.32 \\ -2.91$

Progression of series looks good N3LO and NNLO central value similar! Significantly smaller variation!

ENERGY VARIATION



ENERGY VARIATION



Separating scales

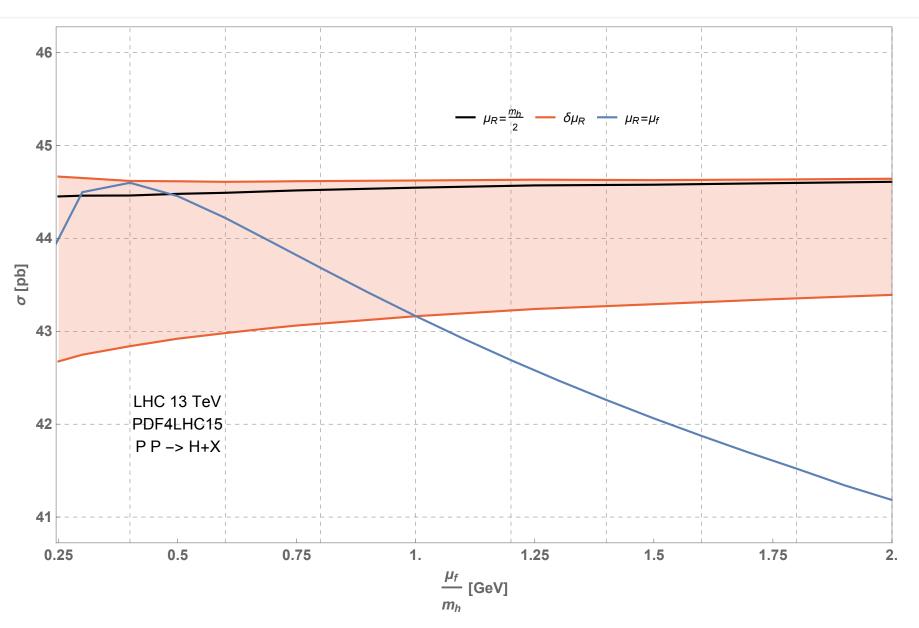
$$\sigma(\mu) = \alpha_S^2(\mu)\sigma^{LO}(\mu) + \alpha_S^3(\mu)\sigma^{NLO}(\mu) + \alpha_S^4(\mu)\sigma^{NNLO}(\mu) + \alpha_S^5(\mu)\sigma^{N^3LO}(\mu)$$

Call
$$\mu \to \mu_f$$

Replace
$$\alpha_S(\mu_f) = \alpha_S(\mu_R) - \frac{\alpha_S(\mu_R)^2}{\pi} \beta_0 \log \left(\frac{\mu_f^2}{\mu_R^2}\right) + \dots$$

Re-expand through $\mathcal{O}(\alpha_S(\mu_R)^5)$

$$\mu_R^{central} = \frac{m_h}{2} \qquad \text{Vary} \quad \mu_R \in \left[\frac{m_h}{4}, m_h\right]$$



Allowing for extreme variations

$$\sigma_{PP\to H+X}^{eff} = 44.6pb \pm \frac{0.42\%}{-4.1\%}$$

Extreme variations:

for example:
$$\mu_f = m_h$$
 $\mu_R = \frac{m_h}{4}$

Commonly not used for estimates

ALTERNATIVES?

Look for different representation of an N3LO cross section

Threshold resummation

Deals with the first term in the threshold expansion

Predicts terms at higher order in α_S

Most valid when threshold parameter is ~one

$$\tau = \frac{m_h^2}{S} = 0.0000924556$$

2(+) Schools:

SCET

"Conventional" Resummation

CON. RESUMMATION

[Stermann;Catani,Trentadue; Grazzini,de Florian,Nason;Forte&Co., Bonvini,Marzani;...]

Factor the hadronic cross section by Mellin-Transform

$$\sigma(N) = \int_0^1 d\tau \tau^{N-1} \sigma(\tau) = f_g^2 C_{gg} e^{G_H} + \mathcal{O}(\frac{1}{N})$$

Threshold limit ~ $N o \infty$

Contains terms that are formally divergent and are resumed by exponential

$$\log(N)$$

Numeric Mellin inversion

Logarithmic accuracy: N3LL

SCET

[Ahrens,Becher,Neuber,Li,...]

Laplace transform to factor the cross section

$$\sigma(\eta) = \int_0^\infty d\tau e^{\eta \tau} \sigma(\tau) = \sigma_0 HSC_t^2 f_g^2 + \mathcal{O}((1-z)^0)$$

Solve evolution equation for factored functions

$$\frac{\partial}{\partial \mu^2} \sigma(\eta) = 0$$

Transform back to momentum space

Target: Reduce the scale dependence

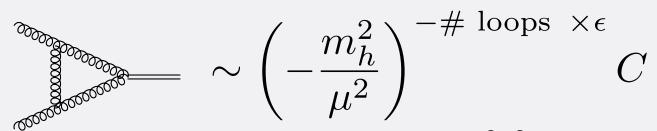
SCET

π^2

Hard function

$$\frac{\partial}{\partial \mu} H(\mu) = C(\mu) H(\mu) \longrightarrow H(\mu) = e^{\int_{\mu_0}^{\mu} d\mu' C(\mu')} H(\mu_0)$$

H= "IR"-renormalised Form Factor

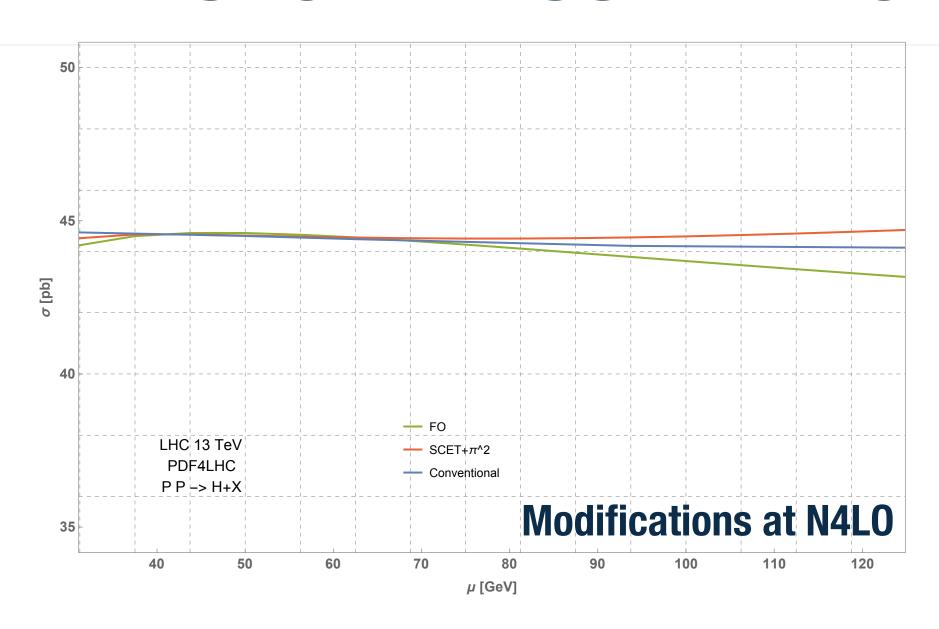


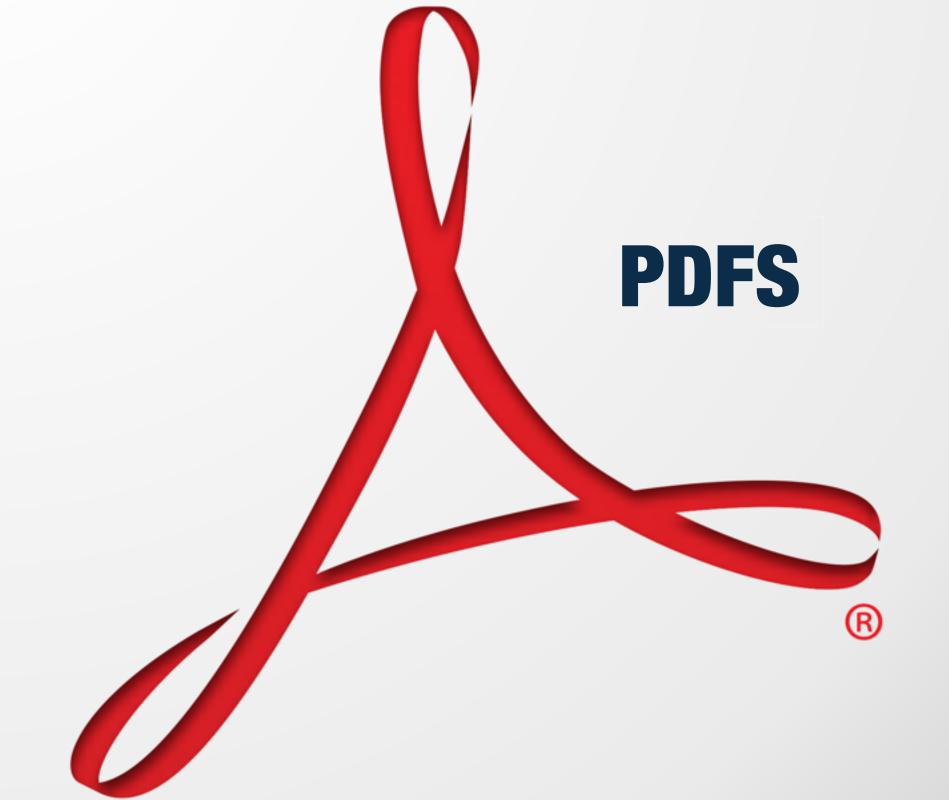
$$Re\left((-1)^{-\epsilon}\right) = 1 - \frac{\pi^2 \epsilon^2}{2} + O\left(\epsilon^4\right)$$

Choose $\mu_0^2 = -m_h^2$ exponentiates some

NLO Virtual = π^2 Also responsible for large K-factor Partly resummed by SCET

THRESHOLD RESUMMATION





PDFS

PDF4LHC15

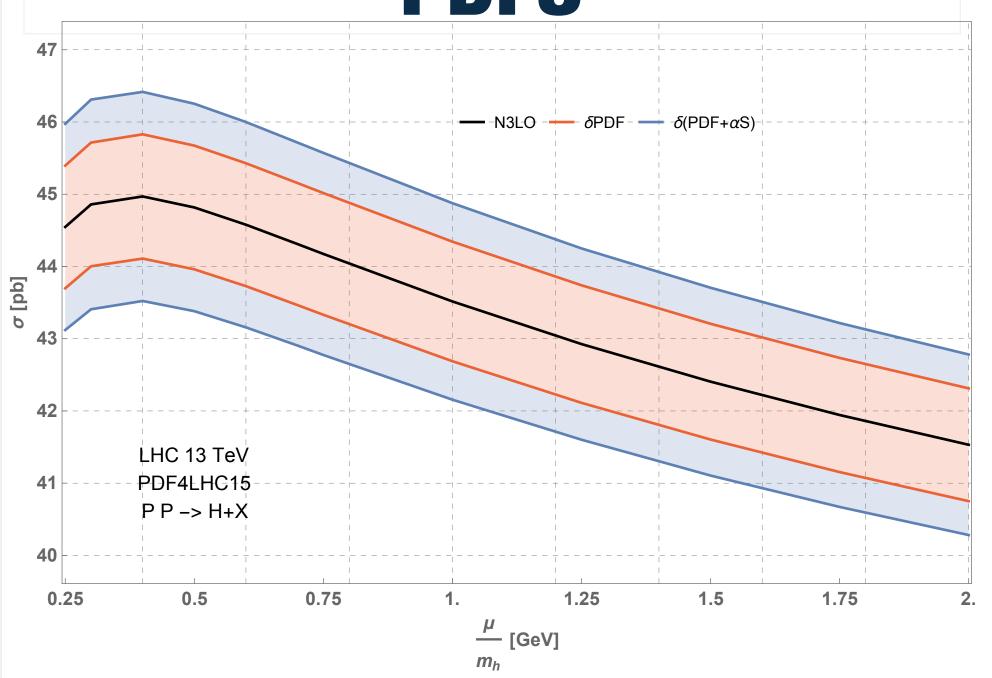
Combination of CT14, MMHT and NNPDF3

PDF uncertainty here: 100 MC

$$\delta_{PDF}=$$
 one standard deviation of all 100 MC results

$$\alpha_S(m_Z) = 0.118 \pm 0.0015$$

$$\delta_{\alpha_S + PDF} = \sqrt{\delta_{\alpha_S}^2 + \delta_{PDF}^2}$$



PDFS

Small PDF uncertainty

$$\delta_{PDF} = 1.91\%$$

Relatively large coupling uncertainty

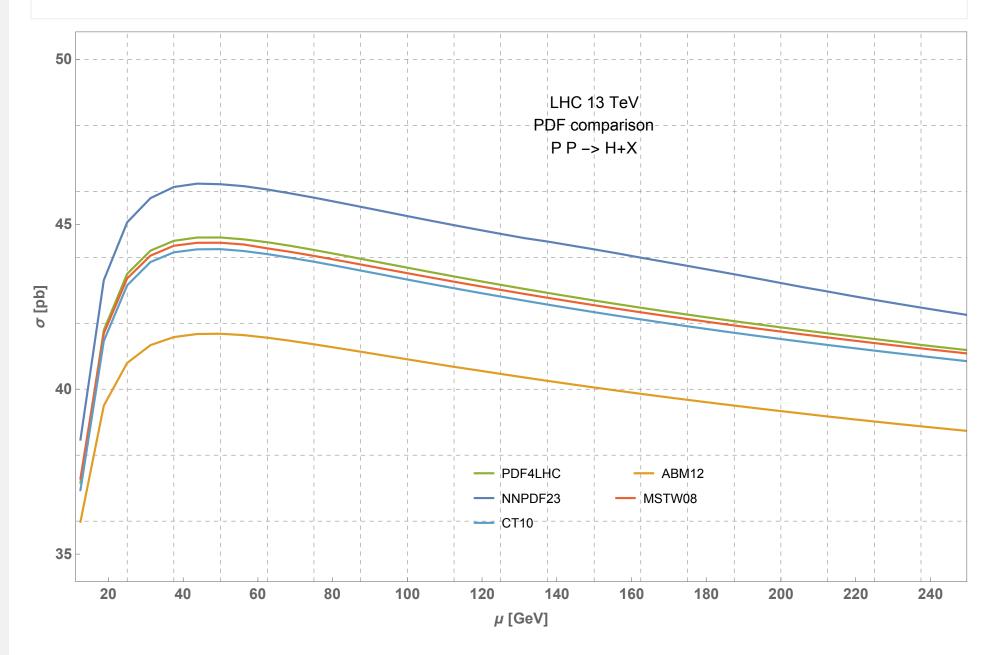
$$\delta_{\alpha_S} = 2.6\%$$

Quadratic combination of uncertainties

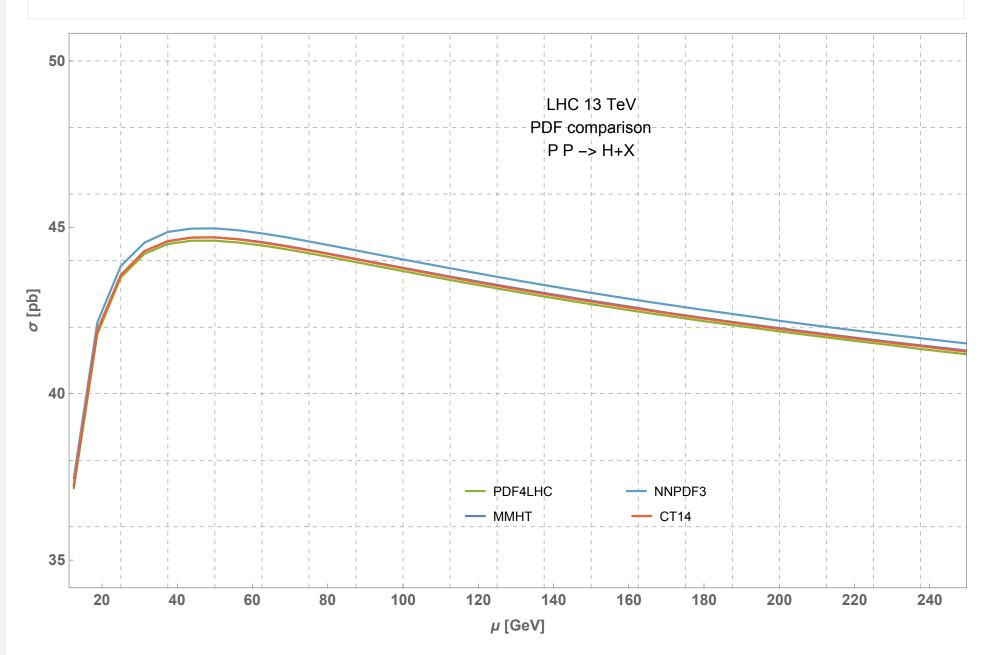
$$\delta_{PDF+\alpha_S} = 3.2\%$$

Individual Sets? How much did they change?

PREVIOUS VERSIONS

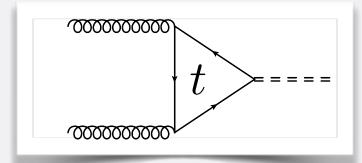


NEWER VERSIONS



QUARK MASSES

We know: • Full LO: Energy Independent Increase

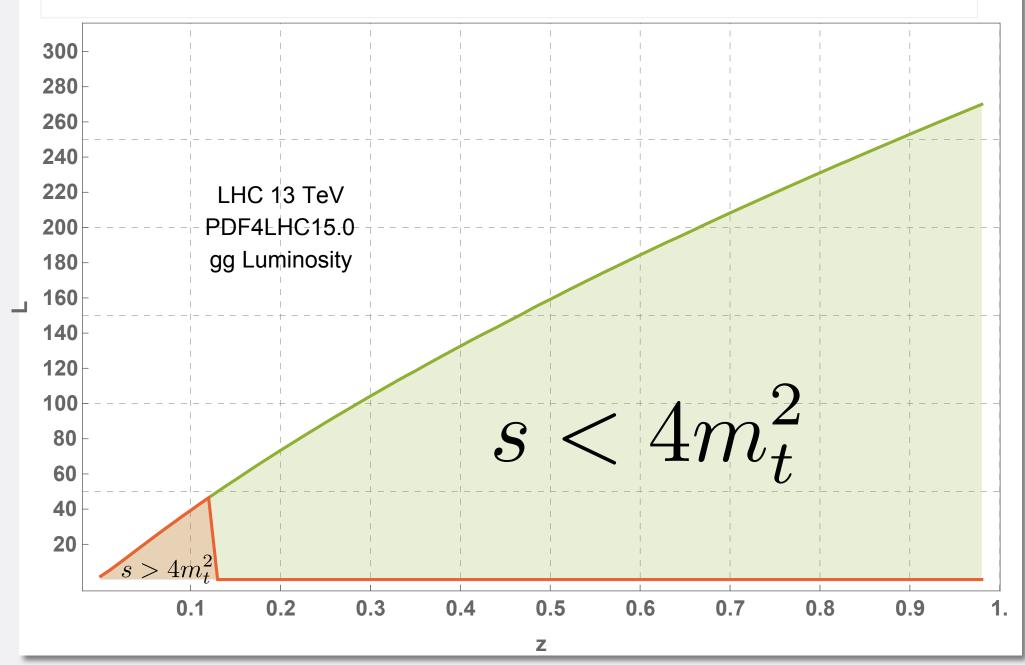


- Full NLO [Djouadi,Graudenz,Spira,Zerwas; Aglietti,Bonciani,Degrassi,Vicini;...]
- NNLO approximation

[Harlander, Mantler, Marzani, Ozeren; Pak, Rogal, Steinhauser]

Approximation: Expansion in $\sim \frac{s}{4m_t^2}$

How well does the effective theory work?



How to combine the effective theory with known results

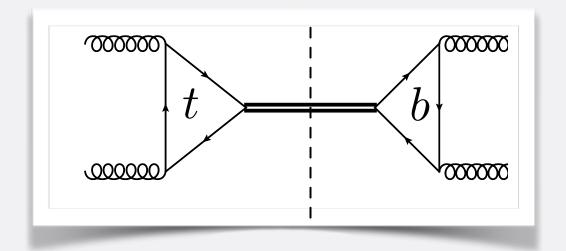
$$K_t = rac{\sigma_{ex}^{LO}}{\sigma_{eft}^{LO}}$$
 only $m_t
eq 0$

Rescale effective theory

$$\sigma_{eft,R} = K_t \left(\sigma_{eft}^{(0)} + \alpha_S \sigma_{eft}^{(1)} + \dots \right)$$

Combine higher order rescaled EFT contributions with lower order full mass contributions

Bottom/Charm Quarks: Interference with top-quark loop



σ_{eft}^{LO}	15.13[7]	
$\sigma^{LO}_{eft;R}$	16.08[1]	
$\sigma_{ex.;t}^{LO}$	16.08[1]	+6.2%
$\sigma^{LO}_{ex.;t+b}$	15.02[1]	-0.7%
$\sigma^{LO}_{ex.;t+b+c}$	14.90[1]	-1.5%

σ_{eft}^{NLO}	34.81[1]	
$\sigma^{\check{N}LO}_{eft;R}$	37.00[2]	+6.3%
$\sigma_{ex;t}^{NLO}$	36.76[1]	+5.6%
$\sigma^{NLO}_{ex;t+b}$	35.09[1]	+0.8%
$\sigma^{NLO}_{ex;t+b+c}$	34.91[1]	+0.3%

Rescaled effective theory describes the full theory well Interference contributions with light quarks are large!

NNLO: We only know an approximation

Correction: ~+0.4% Uncertainty:~1 %?

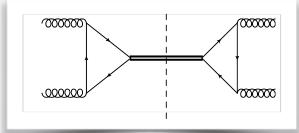
Light quark masses sensitive to RG scheme!

	\overline{MS}		OS
$\sigma^{LO}_{ex;t+b+c}$	14.90[1]	$ \mid \sigma^{LO}_{ex;t+b+c}$	16.12[1]
$\sigma^{NLO}_{ex;t}$	36.76[1]	$\sigma^{NLO}_{ex;t}$	36.80[1]
$\sigma^{NLO}_{ex;t+b}$	35.09[1]	$\sigma^{NLO}_{ex;t+b}$	34.63[1]
$\sigma^{NLO}_{ex;t+b+c}$	34.91[1]	$\sigma^{NLO}_{ex;t+b+c}$	34.15 [1]

2.1%

Top quark scheme has hardly any impact

Interference of b ant t only NLO

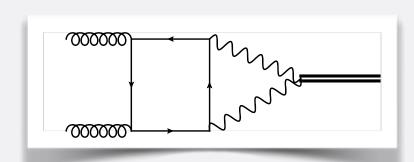


Full NNLO could remove 2-3% uncertainty!

ELECTRO-WEAK

ELECTRO-WEAK

Energy independent EWK corrections Only virtual corrections to Born



[Actis, Passarino, Sturm, Uccirati; Degrassi, Maltoni; ...]

The problem: How to combine?

$$\sigma = \sigma_{QCD} \times (1 + \delta_{EWK}) \qquad +5.2\%$$

$$\sigma = \sigma_{QCD} + \sigma^{LO} \delta_{EWK}$$
 +2.5%

QCD K-Factor! Does it factor?

ELECTRO-WEAK

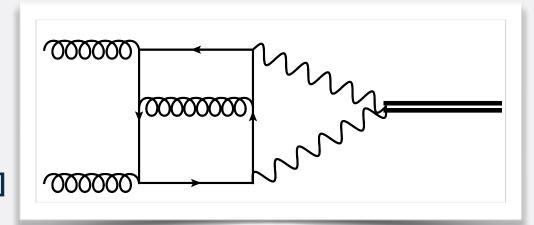
$$\sigma = \sigma_{QCD} \times (1 + \delta_{EWK})$$

$$\sigma = \sigma_{QCD} + \sigma^{LO} \delta_{EWK}$$

We are missing $O(\alpha \alpha_S)$

Approximation:

[Anastasiou, Boughezal, Petriello]



EFT approach to light quark contributions: Wilson Coefficient

$$C_{QCD} \rightarrow C_{QCD} + \lambda_{EWK} \left(1 + C_{w1} \frac{\alpha_S}{\pi} + C_{w2} \frac{\alpha_S^2}{\pi} + \dots \right)$$

Result:
$$C_{w1} = \frac{7}{6}$$

Result: $C_{w1} = \frac{7}{6}$ **Almost complete factorization** +5.1%

Requires
$$m_W > m_h$$

CONCLUSIONS

QCD Effective: N3L0

QCD Full: NLO+

EWK: $\mathcal{O}(\alpha)$ +

We know a lot

$$\begin{split} \sigma_{PP\to H+X}^{ggf} &= K_t \sigma_{eft}^{N3LO} + \delta \sigma_{EWK} + \delta \sigma_{m_t,m_b,m_c} \\ &= 1.063 \times 44.62 + 2.37 - 2.12pb = 47.67pb \\ &\text{preliminary} \end{split}$$

Many effects contributing!

CONCLUSIONS

preliminary

$$\sigma^{ggf}_{PP\to H+X} = 47.67 pb^{0.32\%}_{-2.91\%} \pm 1.91\% \pm 2.6\% \pm 2\% \pm 2.5\%$$

$$\delta_{\mu}$$
 δ_{PDF} δ_{α_S} δ_{t+b+c} δ_{EWK}

Higher luminosity and energy soon: Statistical uncertainty gone

Many fronts to improve on current precision

Outlook:

N3LO Precision for LHC!