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S0 Introduction

R&D project exploring parallel computing architectures for HEP data processing
Tracking is natural starting point as it’s the most CPU intensive step

Xeon-phi is a good candidate because of common features with Xeon processors
and because of DOE investments in supercomputers
- but not only possibility we will consider (also GPUs, etc.)

We started from a semi-realistic standalone setup for simulation and
reconstruction with the goal of understanding assets and bottlenecks of the
technology
— simple barrel geometry, reduced material effects, gaussian smeared hits, no jets nor decays
- Kalman Filter-based combinatorial algorithm, inspired by CMS version
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UCSD Kalman Filter Tracking ».

Kalman Filter tracking widely used in HEP, outstanding performance in LHC environment.

It consists in the reiteration of a basic logic unit for each tracker layer.
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upd:;éeedri}ate —— XNn=xN-In+Kne (mn-Hn e xN-1y) G l “

Nth measurement —— MN

Q=>0=>0

2
2
O

propagation to N —— =Fn-1-xN"In_1 ‘
(x,¥,2,px,py,pz) t ﬁ G ;
(x,y,2) .

seed

D>Q0D>O@D>0=D> | D@
PO>9=>9=>0>9

>0 0>

updated state N-1
after N-1 — > X7 N-1
r S O

The track reconstruction process can be divided in 3 steps: track seeding, building and fitting.

The track fit is the bare repetition of the basic unit, ideal as a starting point.
Track building is the most time consuming part - it involves branching points of variable size,
with the simplest version degenerating into the track fit case.
Track seeding under development but not included yet, for now seeds are defined using MC info.
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Dedicated data structures: Matriplex

V=

Approach successful only if data structures are optimized for the specific architecture.

Kalman filter calculations based on small matrices.

Intel Xeon and Xeon Phi have vector units with size 8 and 16 floats respectively.

How can we efficiently exploit them?

Matriplex is a “matrix-major” representation, where vector units elements

are separately filled by a different matrix: n matrices work in sync.

R1 _ MI(1,1) M!(1,2) M!(1,N) M!(2,1) M!(N,N) M1, 1) Mn+1(1,2)

R2 _ M2(1,1) M2(1,2) M2(1,N) M2(2,1) M2(N,N) MM2(] 1) M2 (],2)

Rn _ M2(1,1) M2(1,2)
vector unit

Matrix size NxN, vector unit size n
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UeSD Strategy for Track Building

e Same core calculations as in track fitting but adding two big complications
- Hit set is not defined: hit on next layer to be chosen between O(10k) hits
- For >1 compatible hit, combinatorial problem requires cloning of candidates

e The two issues can be factorized by dividing the development in two stages
- first develop a simplified algorithm choosing only the best hit on next layer
» deal with large number of hits, not with cloning - study vectorization in this case first

- then full implementation with combinatorial expansion
» parallelization already using this version!

e Data locality is the key for reducing the Nhits problem

- eta partitions are self consistent (no bending)
» bins redundant in terms of hits, track candidates never search outside their eta bin
» natural boundary for thread definitions

- phi partitions give fast lookup of hits in compatibility window

e Seeding is not fully implemented yet, get seeds from sim tracks (cheating...)

bin bin0 : binl: bin2 : bin3 : bind : bin5: bin6: ... : ... :binN-I binN
- tracks_ ; i : i
> e s i s
nits e s i s
minEta maxEta
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LeSD Track Fitting Results
MIC - vectorized, single threaded MIC - parallelized, vector size = 16
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e Track fit implemented using Matriplex
» same physics results and faster than SMatrix even in serial case
» tested both on Intel Xeon and Xeon Phi (native application) with OpenMP, similar qualitative results

e Observe large speedup both from vectorization and parallelization.
» Effective performance of vectorization is about 50% utilization efficiency.
» Parallelization performance is close to ideal in case of 1 thread/core

— some overhead with 2 threads/core

e Both issues related to L1 cache
» Data availability and data packing in matriplex format

G. Cerati (UCSD)

S&C R&D meeting - 2015/10/12




== CMS
—~—— - - - -
LD Track Building Vectorization Results >
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e Run simplified track building (best hit option) on 10 events with 20k tracks each
» pick hit in compatibility window with lowest chi2 at each layer
» 70% (93%) of tracks found with =90% (60%) of the hits

e Already much more difficult than fitting case, expect worse results:

» test multiple (non pre-determined) hits per track
— compatibility window and hits to process are not fully defined until propagation to layer

e Results show a maximum speedup of >2x both on Xeon and Xeon Phi
» reasonable scaling on Xeon
» overhead observed when enabling vectorization on Xeon Phi, then speedup
— further gain from using prefetching and gathering instrinsics, but data input still takes a large fraction of the time!

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 7



A

—e— Measured

—— ldeal Scaling

Y
& »

| IV I B T I R

LD Track Building Parallelization Results
Xeon - parallelized, vector size = 8 Xeon Phi - parallelized, vector size = 16 (int.)
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e Run full track building with combinatorial expansion of candidates

» ultimate

physics performance, slower

» 85% (95%) of tracks found with >90% (60%) of the hits

e Parallelization is implemented by distributing threads across 21 eta bins
» for nEtaBin multiple of nThreads, split eta bins in threads
» for nThreads multiple of nEtaBin, split seeds in bin across nThreads/nEtaBin threads

e Large speedup achieved, both on Xeon and Xeon Phi
» up to ~5x on Xeon and >10x Xeon Phi
» speedup saturates above nThreads=42

G. Cerati (UCSD)
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UCSD Bottlenecks of single threaded running -

VTune Hotspots Analysis on CHEP code

# Advanced Hotspots Hotspots viewpoint (change) @

B Collection Log | @ Analysis Target Analysis Type M Summary BeEENCISRe
Grouping: | Function / Call Stack s b @) &)
i CPU Time ® :
Function / Call Stack Effective Time by Utilizatione @ s 0@ lns‘t‘reutf:;c:’ns Ecsatlllrrc\aof:t Totalcl(t)ﬁ:\attxon
|@idle @Poor @Ok @ Ideal @ Over L
b std:vector<int, std:-allocator<int>>::vector 40772 I 114,991,736,536 728,825,808 0
b_int_free 39.751s [ 136,359,038,066 0 1,125,954,207
b operator new 32 712« £6,154,002,942 0 0
b atan2f 30.187s I 96,263,571,713 0 0
b bri 14,193 (D 2.656.,096,078 0 0
b Matriplex: -MatriplexSym<float, (int)3, (int)8>::Slurpin 13.738s D 27,254,784,743 0 0
bstd:vector<Hit, std::allocator<Hit>>: vector 13 491 D 48,368,155,014 1,447.206,650 6,041,737
b Matriplex::CramerinverterSym<float, (int)3, (int)8>::Invert 8.327s D 15,279,940,773 0 0
bstd::__unguarded_linear_insert<__gnu_cxx::__normal_iterator<Track*, std::vector<Track, std:-allocator<Ti 6 8s1s D 40,713,325.132 59.662,888 888,022,699
P ROOT::Math MatRepSym<float, (unsigned int}6>::operator= 6.092s I 12,600,131,879 0 467,391,832
b__intel_ssse3_rep_memmove 5.754s [ 14,338,306,198 0 0
b std::vector<std: :vector<Track, std::allocator<Track>>, std:-allocator<std::vector<Track, std::allocator<T, 4.927s B 8,850,791,643 17,446 13,912,039
b std-vector<EtaBinOfCombCandidates, std::allocator<EtaBinOfCombCandidates>>: ~vector 4832 D 5.514,436,399 0 34,567,836
b MkFitter:: FindCandidates 4 508s [N 11,976,985,333 7.887.339 187,147,759
b std-vector<Track, std::allocator<Track>>::reserve 4 3341;- 7.961,238,732 14,178,785 0
bfree 39185 12,843,035.454 0 0
b std-vector<int, std:-allocator<int>>:_M_emplace_back_aux<int const&> 3012: 18 24,161,489,523 394,041,601 0
P Matriplex::MatriplexSym<float, (int)6, (int)8>::operator= 281858 9,673.130,099 0 1,350,384,733
b Track: Track 2.786% . 7.584,629.305 93,542,787 463,911,688
b _10_file_write 259258 435,958,384 0 0
b propagateHelix ToRMPlex 2203 3.122,056,392 0 0
bstd::__insertion_sort<__gnu_cxx::__normal_iterator<Track®*, std::vector<Track, std::allocator<Tack>>>,1 2.164s[ 7.990,728,691 5,356,129 62,442,951

Leading functions are all memory operations!
Cloning of candidates and loading of hits in cache are the bottlenecks.

(note that atan2f is mainly in event preparation - not counted in timing tests)
G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 9
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oooooooooooooo

G. Cerati (UCSD)

sort temp vector and
clean exceeding clones

A

Cloning: CHEP approach

- all candidates processed

go to next hit

A N~

CMS/

fail

clone candidate
update with hit

push in temp vector

4125

> test chi2<cut

T

loop over hits in window

T

propagate candidate to layer
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candidates for
next layer ready

G. Cerati (UCSD)

Cloning engine approach

_ sort bookkeep list,
clone and update only the best N

A

- all candidates processed

go to next hit

A

fail

> test chi2<cut

T

N\

CMS/

add entry in bookkeep list

/pass

loop over hits in window

T

propagate candidate to layer
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UCSD Threaded cloning engine approach

Main thread

go to next hit

N

Auxiliary thread

clone and update only the best N

sort bookkeep list,

all candidates processed
for one seed

fail add entry in bookkeep list

/pass

—>|test chi2<cut

T

loop over hits in window

T

G. Cerati (UCSD)
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20k tracks per event, report time for 10 events

VUOI phiphi | VUOS8 phiphi VUOI| —08 VUOI micO VU1 6 micO VUOI—08
[s/10 evt] [s/10 evt] speedup [%] [s/10 evt] [s/10 evt] speedup [%]
CHEP 17.40 12.40 29 94.31 70.76 25
cloning engine 17.87 8.20 54 93.00 50.00 46
threaded 11.60 6.13 47 64.50 38.00 41
cloning engine
speedup [%] 35 25 : 3] 24 :
th.c.e.vs c.e.
QQFQ-Qe o '1:5' - '1.I55l - .2:5. - '2.'55' - '3|s' - '3.I55l - l4:s' - '4.I55' - 'Slsl - ISAISSI - '615' - 'G.ISS' - '7:sl - l7.lSsl - '8:5' -

OMP Maste...
Thread (TI...

event
preparation

processing
(repeated 10x)

Cloning engine gives large speedup from vectorization.
Threaded cloning engine gives significant speedup over serial cloning engine: 25-35%
(full utilization of parallel threads would be 50%)

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 13
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UeSD Reducing size of data formats

CMS

e Size of Hit and Track objects is crucial since they have heaviest impact on memory

e Current versions carry data members that are not necessarily needed
- MC truth information, copy of hit vector

- parameters and errors stored as SMatrix objects which are heavier than just the array of floats

e Reduce size of Track by 20% and size of Hit by 40%

- change SMatrix members to plain arrays (only for hits for now)
- move MC truth information in separate structure (with same indexing as main object)

VUOI phiphi [s/10 evt] VUO08 phiphi [s/10 evt]
CHEP 17.6 12.3
CHEP (r.d.f) 13.9 8.7
cloning engine 19.3 9.7
cloning engine (r.d.f) 18.3 8.5
threaded cloning engine 13.0 8.3
threaded cloning engine (r.d.f) 13.8 8.1

Large speedup wrt CHEP, smaller impact for cloning engine case.
Or in other terms, cloning engine more relevant when memory issues are bigger.

G. Cerati (UCSD)
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UcsSD Further ideas to improve vectorization

Detailed analysis revealed where is the current bottleneck for non ideal
vectorization performance

e We process 8/16 candidates in the same vector unit on Xeon/XeonPhi

Different number of probed hits per candidate lead to dead time
- in case the search window is very different
- in case the local occupancy is very different
- in case there is a track that goes crazy

Currently tracks are simply split in eta bins

e Main idea for further improvement is to sort track candidates in a smart way
- sort by position on next layer, sort by curvature, ...

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 15
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"y )
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e CHEP results on Xeon consistent with a serial workload of ~25% of T1 execution
- Fitto Amdahl’s Law: T = T1 * (0.74/Nthreads + 0.26)
e Largest contribution coming from re-instantiation of data structure at each event

e Replacing deletion/creation with simple reset gave large improvement
- Amdabhl still fits: T=T1 * (0.91/Nthreads + 0.09)

e Significant residual contribution to non-ideal scaling is due to non-uniformity of occupancy
within threads, i.e. some threads take longer than others
- clear limitation of distributing the thread work among eta bins
e Work ongoing to define strategies for an efficient ‘next in line’ approach or a dynamic
reallocation of thread resources

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 16
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UeSD Full simulation results

e We are working towards reconstructing tracks from a full simulation
or from real detector data
- non ideal geometry, material effects
— detector inefficiencies, non-gaussian tails in hit position
- particle clustering in jets, particle decays

e The simplest way to do this is to interface with CMSSW
- indirect way, dumping and reading from an ntuple
- save and link information from all tracking-related collections
» hits, seed, tracks - both simulated and reconstructed
- maximal flexibility:
» use simulation, local reconstruction or steps in global reconstruction as our starting point
» allow direct comparison of same events with CMSSW reconstruction (but this is not so straightforward)

— can be useful for all sort of tracking studies in CMS:
https://github.com/cerati/tracking-tests/tree/master/TrackingNtuple

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12
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Material in CMSSW reconstruction
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In CMSSW the tracker material is

parametrized in terms for

radiation length (radlL) and
energy loss (€ = Kz2Z/A term in

Bethe-bloch formula)

All material (including services) is
assumed on the detector module,

so the effect is that the

parameters are flat in phi but
vary significantly vs r and z

Maps made from ntuple, using

simHit position
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= Material Effects in mkFit

Add two float data members to Hit class: radl and xi
- filled when reading simulation txt file from cmssw ntuple

The PDG formulas are used when propagating to the hit position
- multiple scattering uses radl to inflate the momentum errors
- energy loss uses xi to reduce |p| (no change in uncertainty, assume negligible)

- not when propagating to the average radius (we do not know the hit yet):
» pros: effects are applied only once, included in chi2 calculation and trajectory update;
» cons: they are not included in window search, not applied to invalid hits

Thoughts on a possibly better approach
— parametrize the radl and xi values as a function of layer and z
- avoid increasing the size of the Hit class
— can include material effects in window search calculation and for invalid hits

Overall a small effect in the barrel:
- increase the covariance by <O(10-%) GeV?, i.e. O(MeV) on momentum error

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 19
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LeSD Layer radii

h! Average radii [cm]:

PXBi o iyimigigiimiyimio PXB1l = 4.42

i B IRIRIRIRieigigie 0 PXB2 =  7.31

L P PXB3 = 10.17

TIBlL = 25.65

TIB2 = 33.81

TIR3 = 41.89

o' TIB4 = 49.67

- TOB1 = 60.95

- TOR2 = ©69.11

TOB3 = 78.19

i 1IHIHIE TOB4 = 80.84

R | I | B TH TR TOB5 = 96.78

0 20 40 80 100 120 TOB6 — 108.10

Build reco geometry with cylindric barrel layer at average radii.
First propagation step to average radii, find hits in compatibility window.
For hits in window, perform second propagation step:
compute chi2 and update parameters at exact hit radius.

Two main issues:
Spread within strip layers comparable to distance to next layer.
Large gap from PXB3 to TIB1.

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 20
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Results on CMSSW simulation

CMS/

Single event with 100 tracks merging from single muon simulation events.
Hits obtained from smearing of SimHit positions.

Tot found with Apt<10% | Found with NPit>8|  with Apr<10%
pr=1 GeV, x? cut=30 100 100 78 78
pr=10 GeV, X? cut=30 100 100 94 94

G. Cerati (UCSD)

Performance not far from full efficiency.
Detailed debugging of problematic cases in ongoing.

S&C R&D meeting - 2015/10/12
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LeSD Conclusions

Significant progress in parallelized and vectorized tracking R&D on Xeon/Xeon Phi

Good understanding of bottlenecks and limitations, new versions of the code
faster and closer scaling to ideal
- ideas to further improve performance

Setup to process fully realistic data (CMSSW), with encouraging preliminary results

The project is solid and promising but we still have a long way to go

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 22
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TrackingNtuple

Sim/RecHits
(pixel, strip)

RecHits

SimTracks

(glued strips)

RecSeeds

A

https://github.com/cerati/tracking-tests/tree/master/TrackingNtuple

RecTracks

CMS/

BeamSpot

G. Cerati (UCSD)
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UCSD Neglecting material effects

Just for curiosity, let’s neglect material effects in reconstruction...

Tot found with Apt<10% | Found with NPit>8| with Apt<10%
pr=1 GeV, X2 cut=15 100 100 21 21
pr=10 GeV, x? cut=15 100 100 94 94

No effect on 10 GeV tracks, large reduction in hit collection efficiency for 1 GeV.

This is exactly what we expected, looks like our setup in now in good shape!

G. Cerati (UCSD) S&C R&D meeting - 2015/10/12 25



