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Introduction

• R&D project exploring parallel computing architectures for HEP data processing
• Tracking is natural starting point as it’s the most CPU intensive step
• Xeon-phi is a good candidate because of common features with Xeon processors 

and because of DOE investments in supercomputers
- but not only possibility we will consider (also GPUs, etc.)

• We started from a semi-realistic standalone setup for simulation and 
reconstruction with the goal of understanding assets and bottlenecks of the 
technology
- simple barrel geometry, reduced material effects, gaussian smeared hits, no jets nor decays
- Kalman Filter-based combinatorial algorithm, inspired by CMS version
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Kalman Filter Tracking
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Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.
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and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

seed

basic logic unit track fit track building

The track reconstruction process can be divided in 3 steps: track seeding, building and fitting.

The track fit is the bare repetition of the basic unit, ideal as a starting point.
Track building is the most time consuming part - it involves branching points of variable size, 

with the simplest version degenerating into the track fit case.
Track seeding under development but not included yet, for now seeds are defined using MC info.

Kalman Filter tracking widely used in HEP, outstanding performance in LHC environment.
It consists in the reiteration of a basic logic unit for each tracker layer.
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Dedicated data structures: Matriplex
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Figure 4. Memory layout for the new matrix library Matriplex. The layout is optimized for
our problem, which consists of matrix manipulations of low-dimensional matrices. The memory
layout is matrix-major. In the Figure, the matrix dimension is N ⇥N and the vector unit size
is n.
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5. Optimized Matrix Library Matriplex
The computational problem of Kalman Filter-based tracking consists of a sequence of matrix
operations on matrices of sizes from N ⇥N = 3⇥ 3 up to N ⇥N = 6⇥ 6. To allow maximum
flexibility for exploring SIMD operations on small-dimensional matrices, and to decouple the
specific computations from the high level algorithm, we have developed a new matrix library,
Matriplex. The Matriplex memory layout is optimized for the loading of vector registers
for SIMD operations on a set of matrices as shown in Fig. 4. Matriplex includes a code
generator for generation of optimized matrix operations supporting symmetric matrices and
on-the-fly matrix transposition. Patterns of elements which are known by construction to be
zero or one can be specified, and the resulting generated code will be optimized accordingly to
reduce unnecessary register loads and arithmetic operations. The generated code can be either
standard C++ or simple intrinsic macros that can be easily mapped to architecture-specific
intrinsic functions.

6. Results
We present the results of this study in two stages: vectorization and parallelization. In the first
step we restructure the code to allow use of the vector units in Xeon1 and Xeon Phi2 processors.
In the second step we use OpenMP to parallelize the vectorized fitting procedure across the
cores on the large-core and small-core devices.

Figure 5 shows the timing for fitting 1M tracks as a function of the vector size, using a single
thread. Results are compared to scaling of serial processing time (“ideal scaling”), defined as
the time with vector unit size=1 divided by the vector unit size. Both for Xeon and Xeon Phi,
a significant vectorization speedup is achieved, with an e↵ective utilization of the vector units
of ⇠ 50% .

Figure 6 shows the timing for fitting the same set of tracks as a function of the number of
threads, in case all vector units are used. We test two approaches for distributing threads on
the cores: filling every core with one thread or adding a second thread on the same core before
moving to a di↵erent one. We compare to ideal parallelization performance (“ideal scaling”),
assuming no hyperthreading (i.e. a maximum of 12 threads on Xeon, maximum 120 threads
on Xeon Phi). Performance for one thread/core approach follows the ideal curve, with a small

1 CentOS 6.5, 2⇥ 6 core Xeon E5-2620 @ 2GHz, 64 GB RAM, turbo o↵, hyperthreading enabled
2 Xeon Phi 7150, 16 GB RAM, 61 cores @ 1.24GHz

Kalman filter calculations based on small matrices.
Intel Xeon and Xeon Phi have vector units with size 8 and 16 floats respectively. 

How can we efficiently exploit them?

Matriplex is a “matrix-major” representation, where vector units elements 
are separately filled by a different matrix: n matrices work in sync.

Approach successful only if data structures are optimized for the specific architecture. 
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Strategy for Track Building
• Same core calculations as in track fitting but adding two big complications

- Hit set is not defined: hit on next layer to be chosen between O(10k) hits
- For >1 compatible hit, combinatorial problem requires cloning of candidates

• The two issues can be factorized by dividing the development in two stages
- first develop a simplified algorithm choosing only the best hit on next layer

‣ deal with large number of hits, not with cloning - study vectorization in this case first
- then full implementation with combinatorial expansion

‣ parallelization already using this version!

• Data locality is the key for reducing the Nhits problem
- eta partitions are self consistent (no bending)

‣ bins redundant in terms of hits, track candidates never search outside their eta bin
‣ natural boundary for thread definitions

- phi partitions give fast lookup of hits in compatibility window

• Seeding is not fully implemented yet, get seeds from sim tracks (cheating...)

5
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Track Fitting Results

• Track fit implemented using Matriplex
‣ same physics results and faster than SMatrix even in serial case
‣ tested both on Intel Xeon and Xeon Phi (native application) with OpenMP, similar qualitative results

• Observe large speedup both from vectorization and parallelization. 
‣ Effective performance of vectorization is about 50% utilization efficiency. 
‣ Parallelization performance is close to ideal in case of 1 thread/core

- some overhead with 2 threads/core

• Both issues related to L1 cache
‣ Data availability and data packing in matriplex format

6
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Track Building Vectorization Results

• Run simplified track building (best hit option) on 10 events with 20k tracks each
‣ pick hit in compatibility window with lowest chi2 at each layer
‣ 70% (93%) of tracks found with ≥90% (60%) of the hits

• Already much more difficult than fitting case, expect worse results:
‣ test multiple (non pre-determined) hits per track

- compatibility window and hits to process are not fully defined until propagation to layer

• Results show a maximum speedup of >2x both on Xeon and Xeon Phi
‣ reasonable scaling on Xeon
‣ overhead observed when enabling vectorization on Xeon Phi, then speedup

- further gain from using prefetching and gathering instrinsics, but data input still takes a large fraction of the time!
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Track Building Parallelization Results

• Run full track building with combinatorial expansion of candidates
‣ ultimate physics performance, slower
‣ 85% (95%) of tracks found with ≥90% (60%) of the hits 

• Parallelization is implemented by distributing threads across 21 eta bins
‣ for nEtaBin multiple of nThreads, split eta bins in threads
‣ for nThreads multiple of nEtaBin, split seeds in bin across nThreads/nEtaBin threads

• Large speedup achieved, both on Xeon and Xeon Phi
‣ up to ~5x on Xeon and >10x Xeon Phi
‣ speedup saturates above nThreads=42

8
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Bottlenecks of single threaded running
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Leading functions are all memory operations!
Cloning of candidates and loading of hits in cache are the bottlenecks.

(note that atan2f is mainly in event preparation - not counted in timing tests)

VTune Hotspots Analysis on CHEP code
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Cloning: CHEP approach
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propagate candidate to layer

loop over hits in window

test chi2<cut

go to next hit

clone candidate
update with hit

push in temp vector

sort temp vector and 
clean exceeding clones

fail

pass

all candidates processed

candidates for 
next layer ready
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Cloning engine approach
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propagate candidate to layer

loop over hits in window

test chi2<cut

go to next hit

add entry in bookkeep list

sort bookkeep list, 
clone and update only the best N

fail

pass

all candidates processed

candidates for 
next layer ready
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Threaded cloning engine approach
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propagate candidate to layer

loop over hits in window

test chi2<cut

go to next hit

add entry in bookkeep listfail

pass read list

sort bookkeep list, 
clone and update only the best N

Main thread Auxiliary thread

all candidates processed
for one seed

candidates for 
next layer ready
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Performance
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20k tracks per event, report time for 10 events

VU01 phiphi 
[s/10 evt]

VU08 phiphi 
[s/10 evt]

VU01→08
speedup [%]

VU01 mic0 
[s/10 evt]

VU16 mic0 
[s/10 evt]

VU01→08
speedup [%]

CHEP 17.40 12.40 29 94.31 70.76 25

cloning engine 17.87 8.20 54 93.00 50.00 46

threaded
cloning engine

11.60 6.13 47 64.50 38.00 41

speedup [%]
th. c.e. vs c.e.

35 25 - 31 24 -

Cloning engine gives large speedup from vectorization.
Threaded cloning engine gives significant speedup over serial cloning engine: 25-35% 

(full utilization of parallel threads would be 50%)

event 
preparation

event 
processing 

(repeated 10x)

main 
thread

auxiliary 
thread
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Reducing size of data formats

• Size of Hit and Track objects is crucial since they have heaviest impact on memory
• Current versions carry data members that are not necessarily needed

- MC truth information, copy of hit vector
- parameters and errors stored as SMatrix objects which are heavier than just the array of floats

• Reduce size of Track by 20% and size of Hit by 40%
- change SMatrix members to plain arrays (only for hits for now)
- move MC truth information in separate structure (with same indexing as main object)

14

VU01 phiphi [s/10 evt] VU08 phiphi [s/10 evt]

CHEP 17.6 12.3

CHEP (r.d.f) 13.9 8.7

cloning engine 19.3 9.7

cloning engine (r.d.f) 18.3 8.5

threaded cloning engine 13.0 8.3

threaded cloning engine (r.d.f) 13.8 8.1

Large speedup wrt CHEP, smaller impact for cloning engine case. 
Or in other terms, cloning engine more relevant when memory issues are bigger.
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Further ideas to improve vectorization

• Detailed analysis revealed where is the current bottleneck for non ideal 
vectorization performance

• We process 8/16 candidates in the same vector unit on Xeon/XeonPhi
• Different number of probed hits per candidate lead to dead time

- in case the search window is very different
- in case the local occupancy is very different
- in case there is a track that goes crazy

• Currently tracks are simply split in eta bins
• Main idea for further improvement is to sort track candidates in a smart way

- sort by position on next layer, sort by curvature, ...

15
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Understanding parallelization issues

• CHEP results on Xeon consistent with a serial workload of ~25% of T1 execution
- Fit to Amdahl’s Law: T = T1 * (0.74/Nthreads + 0.26)

• Largest contribution coming from re-instantiation of data structure at each event
• Replacing deletion/creation with simple reset gave large improvement

- Amdahl still fits: T = T1 * (0.91/Nthreads + 0.09)

• Significant residual contribution to non-ideal scaling is due to non-uniformity of occupancy 
within threads, i.e. some threads take longer than others
- clear limitation of distributing the thread work among eta bins

• Work ongoing to define strategies for an efficient ‘next in line’ approach or a dynamic 
reallocation of thread resources

16

Scaling Plots Excluding Eta Bin Setup 

• Now just exclude one code line that creates eta bins 
EventOfCombCandidates event_of_comb_cands; 

// constructor triggers a new std::vector<EtaBinOfCandidates> 

• Accounts for 0.145s of serial code time (0.155s) 
9/18/2015 8 
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Full simulation results

• We are working towards reconstructing tracks from a full simulation 
or from real detector data
- non ideal geometry, material effects
- detector inefficiencies, non-gaussian tails in hit position
- particle clustering in jets, particle decays

• The simplest way to do this is to interface with CMSSW
- indirect way, dumping and reading from an ntuple
- save and link information from all tracking-related collections

‣ hits, seed, tracks - both simulated and reconstructed 
- maximal flexibility:

‣ use simulation, local reconstruction or steps in global reconstruction as our starting point
‣ allow direct comparison of same events with CMSSW reconstruction (but this is not so straightforward)

- can be useful for all sort of tracking studies in CMS:
https://github.com/cerati/tracking-tests/tree/master/TrackingNtuple
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Material in CMSSW reconstruction
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In CMSSW the tracker material is 
parametrized in terms for 
radiation length (radL) and 

energy loss (ξ = Kz2Z/A term in 
Bethe-bloch formula) 

All material (including services) is 
assumed on the detector module, 

so the effect is that the 
parameters are flat in phi but 
vary significantly vs r and z

Maps made from ntuple, using 
simHit position
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Material Effects in mkFit

• Add two float data members to Hit class: radl and xi
- filled when reading simulation txt file from cmssw ntuple

• The PDG formulas are used when propagating to the hit position
- multiple scattering uses radl to inflate the momentum errors
- energy loss uses xi to reduce |p| (no change in uncertainty, assume negligible)
- not when propagating to the average radius (we do not know the hit yet):

‣ pros: effects are applied only once, included in chi2 calculation and trajectory update; 
‣ cons: they are not included in window search, not applied to invalid hits

• Thoughts on a possibly better approach
- parametrize the radl and xi values as a function of layer and z
- avoid increasing the size of the Hit class
- can include material effects in window search calculation and for invalid hits

• Overall a small effect in the barrel:
- increase the covariance by ≤O(10-6) GeV2, i.e. O(MeV) on momentum error

19
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Layer radii
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Average radii [cm]:
PXB1 =   4.42
PXB2 =   7.31
PXB3 =  10.17
TIB1 =  25.65
TIB2 =  33.81
TIB3 =  41.89
TIB4 =  49.67
TOB1 =  60.95
TOB2 =  69.11
TOB3 =  78.19
TOB4 =  86.84
TOB5 =  96.78
TOB6 = 108.10

Build reco geometry with cylindric barrel layer at average radii.
First propagation step to average radii, find hits in compatibility window.

For hits in window, perform second propagation step: 
compute chi2 and update parameters at exact hit radius. 

Two main issues:
Spread within strip layers comparable to distance to next layer.

Large gap from PXB3 to TIB1.

PXB
1,2,3 TI

B1

TI
B2

TI
B3

TI
B4

TO
B1

TO
B2

TO
B3

TO
B4

TO
B5

TO
B6
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Results on CMSSW simulation
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Tot found with ΔpT<10% Found with Nhits≥8 with ΔpT<10%

pT=1 GeV, χ2 cut=30 100 100 78 78

pT=10 GeV, χ2 cut=30 100 100 94 94

Single event with 100 tracks merging from single muon simulation events.
Hits obtained from smearing of SimHit positions. 

Performance not far from full efficiency.
Detailed debugging of problematic cases in ongoing.
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Conclusions

• Significant progress in parallelized and vectorized tracking R&D on Xeon/Xeon Phi

• Good understanding of bottlenecks and limitations, new versions of the code 
faster and closer scaling to ideal
- ideas to further improve performance

• Setup to process fully realistic data (CMSSW), with encouraging preliminary results

• The project is solid and promising but we still have a long way to go
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TrackingNtuple
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SimTracks RecTracks

Sim/RecHits
(pixel, strip)

RecSeeds

RecHits
(glued strips)

BeamSpot

https://github.com/cerati/tracking-tests/tree/master/TrackingNtuple
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Neglecting material effects
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Tot found with ΔpT<10% Found with Nhits≥8 with ΔpT<10%

pT=1 GeV, χ2 cut=15 100 100 21 21

pT=10 GeV, χ2 cut=15 100 100 94 94

Just for curiosity, let’s neglect material effects in reconstruction...

No effect on 10 GeV tracks, large reduction in hit collection efficiency for 1 GeV.

This is exactly what we expected, looks like our setup in now in good shape!


