
Progress with single
source OpenCL

Mark Grimes
12/Oct/2015

Refresher on SYCL

• Pronounced “sickle”. No idea what it stands for.

• Allows C++11 (with some limitations) to be run on any OpenCL
device, from the same source file as the host code. Code example in
backup, or just google.

• AMD have an experimental open source implementation [triSYCL],
but only runs on CPUs (OpenMP underlying).

• Codeplay have a full implementation to be released “later in
2015” [ComputeCpp].

• Possible to get free previews with a confidentiality agreement.
• No idea what license options the released version will have.

• No way of knowing what other implementations are yet to be
announced.

2

ComputeCpp in detail

• Requires OpenCL 1.2 with the cl_khr_spir extension.
• Hence no nVidia GPU support. There are reports that

Windows hotfix drivers support OpenCL 1.2, so maybe it’s
coming?

• SPIR - Standard Portable Intermediate Representation.
• Modified version of clang (“compute++”). Two step build:

1.compute++ with source → outputs header file with SPIR
binary wrapped in C char array.

2.Build with your favourite compiler (could be compute++),
including the header from the previous step.

• Maybe there’s some incantation to do it all in one step? Not
much documentation other than the example build scripts.

3

Current status

• Finally found someone with enough authority to sign the NDA.
• Experimental compiler with little documentation.
• A lot of teething troubles, mostly down to a requirement of a

more recent glibc than my test platform (but only memcpy?).
• Have a version of glibc that seems to play nice* with the

rest of the system, forcing link to that with rpath.
• Managed to get test EDAnalyzers running on host in

CMSSW_6_2_0_SLHC26 (remember this is for HGCal
development). So far just calculating closest PFHit by brute
force.

• Problems with Xeon Phi (later), so took a step back to stand
alone “hello world” programs.

4
* (but see later)

Current status - GPU

• Running on AMD “Hawaii” seems to go okay.
• Although the GPU sometimes disappears and I have to

raise a ticket for a sysadmin to restart the X server (?).
• Not sure if that’s because of something I’ve done or not.
• Get some warnings about incompatible systems. Not sure

what this means.
• Incompatible type formats? I thought SYCL was

supposed to sort this out.
• Results look okay, although currently very simple

kernels.

5

Current status - accelerator

• Running on Xeon Phi just segfaults.
• Running the generated SPIR through a “traditional”

OpenCL program works. Must be host code.
• gdb says crash is in a no argument function in my alien

glibc (get_nprocs). Link going wrong?
• Problem with the system version is just

undefined reference to `memcpy@GLIBC_2.14’?
• Apparently this is some famous glibc regression?
• Tried various hacks to just link memcpy.o from newer

version; redefine symbol etcetera.
• Could do with some help.

6

Current limitations
Not yet a full implementation of SYCL. When actually running, so
far I’ve found (ComputeCpp v2015.06):
• Complains if kernels are chained together in the same enque

command. Thought this was part of the standard, so might be
in next version.

• Currently no OpenCL builtins. E.g. sqrt just segfaults.
• Hierarchical parallelism (i.e. workgroups) currently only

supported on host. I’ve not tested yet.
• Needs plenty of validation, e.g.

7

output[index]=input[index]*input[index];

...gives incorrect results.
float temp=input[index];
output[index]=temp*temp;

...works. Maybe related to Hawaii warning? Can’t remember
which system this was on.

Backup

“Hello CMSSW” in SYCL

9

void TestAnalyser::analyze(const edm::Event& event, const edm::EventSetup& eventSetup)
{

edm::Handle<reco::PFRecHitCollection> hRecHits;
event.getByToken(inputToken_, hRecHits);

size_t inputSize=hRecHits->size();
cl::sycl::queue myQueue;

cl::sycl::buffer<reco::PFRecHit> inputBuffer(hRecHits->data(), hRecHits->size());
cl::sycl::buffer<double> outputBuffer(inputSize*inputSize);

myQueue.submit([&](cl::sycl::handler& myHandler)
{

auto inputAccess=inputBuffer.get_access<cl::sycl::access::read>(myHandler);
auto outputAccess=outputBuffer.get_access<cl::sycl::access::write>(myHandler);

myHandler.parallel_for<class MyKernel>(inputSize*inputSize, [=](int index)
{

const auto& hitPosA=inputAccess[index%inputSize].position();
const auto& hitPosB=inputAccess[index/inputSize].position();
outputAccess[index]=std::sqrt((hitPosA.x()-hitPosB.x())*(hitPosA.x()-hitPosB.x())
 + (hitPosA.y()-hitPosB.y())*(hitPosA.y()-hitPosB.y())
 + (hitPosA.z()-hitPosB.z())*(hitPosA.z()-hitPosB.z()));

});

});

auto outputAccess=outputBuffer.get_access<cl::sycl::access::read,cl::sycl::access::host_buffer>();
size_t indexA=5, indexB=8;
if(inputSize>8) edm::LogInfo("SYCLTest") << "The Cartesian distance between two arbitrary hits is "

<< outputAccess[indexA*inputSize+indexB];
}

This part is the kernel
that would run on the
GPU

Access token à la
edm::EDGetTokenT.
Allows SYCL to
automatically copy the
required data to the
GPU.

Access tokens also allow the queuing system to calculate dependencies
between kernels. E.g. It knows a kernel with read access to outputBuffer
would have to run after this one.

N.B. This slide from my last talk
using triSYCL. Need slight code
changes for ComputeCpp.

• [Trigkas] Angelos Trigkas, University of Edinburgh, August
2014, https://static.ph.ed.ac.uk/dissertations/hpc-msc/
2013-2014/Investigation%20of%20the%20OpenCL%20SYCL
%20Programming%20Model.pdf

• [triSYCL] https://github.com/amd/triSYCL
• [ComputeCpp] https://www.codeplay.com/products/

computecpp
• [last talk] https://indico.cern.ch/event/440798/

10

https://static.ph.ed.ac.uk/dissertations/hpc-msc/2013-2014/Investigation%20of%20the%20OpenCL%20SYCL%20Programming%20Model.pdf
https://github.com/amd/triSYCL
https://www.codeplay.com/products/computecpp
https://indico.cern.ch/event/440798/

