I

Progress with single
source OpenCL

Mark Grimes
12/0ct/2015

niversity of
RISTOL

AR
OUC

&

Refresher on SYCL

Pronounced “sickle”. No idea what it stands for.

Allows C++11 (with some limitations) to be run on any OpenCL
device, from the same source file as the host code. Code example in
backup, or just google.

AMD have an experimental open source implementation [triSYCL],
but only runs on CPUs (OpenMP underlying).

Codeplay have a full implementation to be released “later in
2015” [ComputeCpp].

* Possible to get free previews with a confidentiality agreement.
 No idea what license options the released version will have.

No way of knowing what other implementations are yet to be
announced.

ComputeCpp in detall

* Requires OpenCL 1.2 with the c1_khr_spir extension.

* Hence no nVidia GPU support. There are reports that
Windows hotfix drivers support OpenCL 1.2, so maybe it's
coming”

 SPIR - Standard Portable Intermediate Representation.
* Modified version of clang (“compute++"). Two step build:

1.compute++ with source — outputs header file with SPIR
binary wrapped in C char array.

2.Build with your favourite compiler (could be compute++),
including the header from the previous step.

 Maybe there’s some incantation to do it all in one step”? Not
much documentation other than the example build scripts.

Current status

Finally found someone with enough authority to sign the NDA.
Experimental compiler with little documentation.

A lot of teething troubles, mostly down to a requirement of a
more recent glibc than my test platform (but only memcpy?).

* Have a version of glibc that seems to play nice™ with the
rest of the system, forcing link to that with rpath.

Managed to get test EDAnalyzers running on host in
CMSSW_6_2 0_SLHC26 (remember this is for HGCal
development). So far just calculating closest PFHIit by brute
force.

Problems with Xeon Phi (later), so took a step back to stand
alone "hello world” programs.

* (but see later)

Current status - GPU

* Running on AMD "Hawalii” seems to go okay.

* Although the GPU sometimes disappears and | have to
raise a ticket for a sysadmin to restart the X server (7).

* Not sure if that's because of something I've done or not.

* (Get some warnings about incompatible systems. Not sure
what this means.

* Incompatible type formats? | thought SYCL was
supposed to sort this out.

* Results look okay, although currently very simple
kernels.

Current status - accelerator

* Running on Xeon Phi just segfaults.

* Running the generated SPIR through a “traditional”
OpenCL program works. Must be host code.

* gdb says crash is in a no argument function in my alien
glibc (get_nprocs). Link going wrong?

* Problem with the system version is just
undefined reference to "memcpy@GLIBC 2.14°7

* Apparently this is some famous glibc regression”

* [ried various hacks to just link memcpy .o from newer
version; redefine symbol etcetera.

* Could do with some help.

Current limitations

Not yet a full implementation of SYCL. When actually running, so
far I've found (ComputeCpp v2015.006):

Complains if kernels are chained together in the same enque
command. Thought this was part of the standard, so might be
IN next version.

Currently no OpenCL builtins. E.g. sqrt just segfaults.

Hierarchical parallelism (i.e. workgroups) currently only
supported on host. I've not tested yet.

Needs plenty of validation, e.g.

output[index]=input[index]*input[index];

...gives incorrect results.

float temp=input[index];
output[index]=temp*temp;

...works. Maybe related to Hawaii warning? Can’t remember
which system this was on.

Backup

void TestAnalyser::analyze(const edm::Event& event, const edm::EventSetup& eventSetup)

{

‘Hello CMSSW”™ in SYCL

N.B. This slide from my last talk
using triSYCL. Need slight code
changes for ComputeCpp.

edm: :Handle<reco: :PFRecHitCollection> hRecHits;

event.getByToken(inputToken_, hRecHits); Access token a la

size_t inputSize=hRecHits->size(); edm"EDGetTokenT

cl::sycl::queue myQueue; n '
Allows SYCL to

automatically copy the

required data to the
myQueue.submit([&](cl::sycl::handler& myHandler) GPU

{

cl::sycl::buffer<reco::PFRecHit> inputBuffer(hRecHits->data(), hRecHits->size());
cl::sycl::buffer<double> outputBuffer(inputSize*inputSize);

auto inputAccess=inputBuffer.get_access<cl::sycl::access::read>(myHandler);
auto outputAccess=outputBuffer.get_access<cl::sycl::access: :write>(myHandler);

myHandler.parallel_for<class MyKernel>(inputSize*inputSize, [=](int index)

{
const auto& hitPosA=inputAccess[index%inputSize].position(); . .
const auto& hitPosB=inputAccess[index/inputSize].position(); ThIS part IS the kernel
outputAccess[index]=std: :sqrt((hitPosA.x()-hitPosB.x())*(hitPosA.x()-hitPosB.x()) that would run on the
+ (hitPosA.y()-hitPosB.y())*(hitPosA.y()-hitPosB.y()) GPU
+ (hitPosA.z()-hitPosB.z())*(hitPosA.z()-hitPosB.z()));
1

DK

auto outputAccess=outputBuffer.get_access<cl::sycl::access::read,cl::sycl::access::host_buffer>();

size_t indexA=5, indexB=8;

1fC inputSize>8) edm::LogInfo("SYCLTest") << "The Cartesian distance between two arbitrary hits is "
<< outputAccess[indexA*inputSize+indexB];

Access tokens also allow the queuing system to calculate dependencies
between kernels. E.g. It knows a kernel with read access to outputBuffer
would have to run after this one.

[Trigkas] Angelos Trigkas, University of Edinburgh, August
2014, https://static.ph.ed.ac.uk/dissertations/hpc-msc/
2013-2014/Investigation%200f%20the%200penClL %20SYCL

%20Programming%20Model.pdf
triSYCL] https://github.com/amd/triSYCL

'ComputeCpp] https://www.codeplay.com/products/
computecpp

[last talk] https://indico.cern.ch/event/440798/

10

https://static.ph.ed.ac.uk/dissertations/hpc-msc/2013-2014/Investigation%20of%20the%20OpenCL%20SYCL%20Programming%20Model.pdf
https://github.com/amd/triSYCL
https://www.codeplay.com/products/computecpp
https://indico.cern.ch/event/440798/

