
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS

1

R&D projects in CERN
IT Storage Group

Dirk Duellmann, IT-DSS
CMS R&D meeting

 12.Oct 15

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS R&D - a few non-technical comments

• Today most of IT department and DSS group
focusses on service deployment
– “D” takes place in small s/w development or dev-ops

teams
• separating dev from ops is often not a good idea
• writing stable multi-threaded distributed services is not easy

– “R” is hard to fund
• focused on main technology risk factors for existing services
• if possible in collaboration with

– users - to (re-)define real service needs (eg EOS after WLCG
jamborees)

– technology providers - but clearly separated from any purchasing
(eg CERN openlab)

– universities - which share the academic interest (eg PhD
program)

– other sites - who share similar operational responsibilities

• Rest of this talk
– a few concrete technical examples

2

CERN Disk Storage Overview

2

AFS CASTOR EOS Ceph NFS CERNBox
Raw Capacity 3 PB 20 PB 140 PB 4 PB 200 TB 1.1 PB
Data Stored 390 TB 86 PB (tape) 27 PB 170 TB 36 TB 35 TB
Files Stored 2.7 B 300 M 284 M 77 M (obj) 120 M 14 M

AFS is CERN’s linux home directory service

CASTOR & EOS are mainly used for the physics use
case (Data Analysis and DAQ)

Ceph is our storage backend for images and volumes
in OpenStack

NFS is mainly used by engineering application

CERNBox is our file synchronisation service based
on OwnCloud+EOS

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS EOS Challenges

• EOS started with in-memory namespace
–scalability
–currently some 300 M files

• new use cases like cernbox come with many small files
• new usage patterns like RUCIO may introduce different balance

between files and directories

– latency of namespace restart may affect availability
• tested up to 500 M files but cold-restart would be 20-30 mins

• Namespace R&D
–change concept to scale out namespace?

• eg via an distributed key-value / object store
• {eg via federating different backend namespaces}

–evaluate new storage media
• eg using non-volatile memory (NV-RAM)

4

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Inline Meta-Data - libRadosFs

CERN fellow: Joaquim Rocha
5

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

Internet
Services

libRadosFS
a scalable filesystem library

libRadosFS

rados object store

file & directory API

libCephFS

MDS

for comparison

meta data server
free file-system

5Thursday, April 16, 15

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

Internet
Services

libRadosFS
http://github.com/cern-eos/radosfs

• simple & lightweight C++ storage library
• provides an API to store files and directories as objects in RADOS
pools [Ceph]
• using inodes for efficient renaming
• no additional meta-data server
• synchronous & asynchronous file IO & vector reads
• file chunking - not striping - erasure coded pool support
• small file inlining into directory objects
• directory objects as WAL with auto-compaction
• extended attribute support on files, directories and entries inside a
directory
• parallel query interface
• store & commit - possibility to use file inodes and register them later
into directories
• fsck tool - check & optional repair
• ...

6Thursday, April 16, 15

Rados
Ceph object storage API

<len> bytes
(contents)

OOID (name)

OMAP
KV: a=1
 b=2

read(offset,len)
write(offset,len)
writefull(len)
append(len)
remove()
locks
conditions
single object transactions

XATTR XATTR KV: checksum=0xf

• each object provides
‣ contents (value)
‣ kev-value map (omap)
‣ extended attribute map (xattr)

• erasure encoded objects support only
‣ xattr map
‣ full object writes or appends with the EC blocksize

get a key
set a key
list all keys
remove key

KEY VALUE

operations

7Thursday, April 16, 15

libRadosFS
file and directory IO

libRadosFS

erasure encoded data pool replicated meta data pool

directory inodefile inode XATTR OMAP

XATTR XATTR XATTR OMAP OMAP OMAP

/chep//chep/talk.pdf

talk.pdf

dir IOinode IO

object contents: erasure encoded
object meta-data: replicated

8Thursday, April 16, 15

libRadosFS
integration into EOS

libRadosFS

MGM

FST directory IF

libRadosFS
filesystem

views
quota
views

RadosVectorMap

Namespace Plug-in

file inode IF

on roadmap for
2015

IO Plug-in

helper class to persist
namespace views not provided
by libRadosFs

+ better scalability
+ no namespace boot time
+ many stateless MGMs
- higher latency
- slightly more complex - requires
now also Ceph

10Thursday, April 16, 15

Does Kryder’s law still hold?

areal density CAGR

source: HDD Opportunities & Challenges, Now to 2020, Dave Anderson, Seagate

Shingled Recording

• Shingled Media

• wide write head

• narrow read head

• Result

• continued density
increase

• but, write amplification
within a band

Impact of Shingled
Recording

• Gap between read and write performance increases

• need to check eg if metadata mixing with data is still feasible

• Market / application impact

• Will there be several types of disks?

• emulation of a traditional disk (!)

• explicit band management by application (?)

• constraint semantics / object disk (?)

• Open questions:

• which types will reach a market share & price that makes them
attractive for science applications ?

• can the constrained semantics be applied to HEP workflows?

Object Disk
• Each disk talks object storage

protocol over TCP
– replication/failover with other disks

in a networked disk cluster
– open access library for app

development

– Why now?
• shingled media comes with constrained

(object) semantic: eg no updates 

– Early stage with several open questions
• port price for disk network vs price gain

by reduced server/power cost?
• standardisation of protocol/semantics to

allow app development at low risk of
vendor binding?

Resident Seagate Contributor: Paul Lensing

Seagate Kinetic API
‣Kinetic API

• Access Control
• READ - can read
• WRITE - can write
• DELETE - can delete
• RANGE - can do range
• SETUP - can setup device
• P2POP - can do p2p copy
• GETLOG - can get log
• SECURITY - can set security

• NOOP - like ping
• PUT - store object max. value size 1 MB
• DELETE - delete object
• FLUSH - flush outstanding PUT/DELETE to

device (=sync)
• GET - retrieve value + meta data
• GETVERSION - retrieve version tag for object
• GETNEXT - return next sorted key
• GETPREVIOUS - return previous sorted key
• GETKEYRANGE - return keys in range
• SETCLUSTERVERSION - set cluetser version
• SETPIN - instant secure erase
• SECURITY - set ACL
• GETLOG - retrieve log
• PEERTOPEERPUSH - copy KV between

drives

‣ API less feature rich than rados API - low-level
‣ no partial value get/updates/append - only full object GET/PUT
‣ no arbitrary map per object, but vector clock/version
‣ no clustering support between devices, but P2P push

‣ protocol implemented with google protocol
buffers
‣ disk uses sorted string tables and log

structured merge tree technology

‣need to implement high-level API & clustering software : libkineticio

14Thursday, April 16, 15

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS File Encoding

15

libKineticIO
Openlab R&D project

original file

chunked file

32 sub-chunks
simple + RS encoding simple parity

RS erasure encoding
MDS4 code

can lose at least 4 disks at a time
without data loss

example of file encoding

‣strategy
‣no repair unless absolutely required
‣can lose 12% of disks
without repair
‣no rehashing
‣only replace
‣overflow to next neighbor

best kinetic performance for 32M chunks = 1M sub-chunks

chunk

encode

store sub-chunks

sub-chunk

(32,4,4) encoding has 25% volume overhead

16Thursday, April 16, 15

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Disk Market Consolidation

16

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Disk Market Consolidation

16

Storage Class Memory

6 Science & Technology – IBM Almaden Research Center Jan 2013

Problem (& opportunity): The access-time gap between memory & storage

Research into new solid-state non-volatile memory candidates
– originally motivated by finding a “successor” for NAND Flash –

has opened up several interesting ways to change the memory/storage hierarchy…

Near-future
ON-chip
memory
OFF-chip
memory

ON-line
storage

OFF-line
storage

Decreasing
co$t

100

108

103

104

105

106

107

109

1010

Get data from DRAM/SCM (60ns)
10

1 CPU operations (1ns)
Get data from L2 cache (<5ns)

Read or write to DISK (5ms)

Get data from TAPE (40s)

Access time...
(in ns)

Write to FLASH, random (1ms)

Read a FLASH device (20 us)

Memory/storage gap

1) Embedded Non-Volatile Memory – low-density, fast ON-chip NVM
2) Embedded Storage – low density, slower ON-chip storage

3) M-type Storage Class Memory – high-density, fast OFF- (or ON*)-chip NVM
4) S-type Storage Class Memory – high-density, very-near-ON-line storage

TAPE

DISK

RAM
CPU

SCM

* ON-chip using 3-D packaging

R&D: non-volatile memory is
coming! but how do we use it ?

• still early days for products, but software
integration can already be prototyped

• transactional memory

• use an SSD-based filesystem

• CERN openLab project on NV-RAM based
catalogue with Data Storage Institute Singapore

openLab Summer Student: Tobias Kappé

Moving the EOS namespace to
persistent memory
Tobias Kappé (IT-DSS-DT)
tkappe@cern.ch

Supervised by

Elvin Alin Sindrilaru

September 1, 2015 Moving the EOS namespace to persistent memory 1

Mnemosyne

Mnemosyne1 exposes persistency to C/C++:
•

pstatic variables are stored persistently
•

pmalloc/pfree allocate persistent memory
•

persistent annotations ensure correctness
•

atomic blocks allow transaction control

1
Volos, Tack and Swift (2011)

September 1, 2015 Moving the EOS namespace to persistent memory 5

Mnemosyne
Simplified example: (courtesy of Sergio Ruocco and Le Duy Khanh, DSI)

p s t a t i c i n t p e r s i s t e n t � p p t r ;

i n t main (i n t argc , char const � argv []) {
i f (p p t r == NULL) {

atomic {
p p t r = pma l l oc (s i z e o f (i n t)) ;
� p p t r = 0 ;

}
} e l s e {

atomic { � p p t r += 1 ; }
}
p r i n t f (”� p p t r = %d\n” , � p p t r) ;
return 0 ;

}

September 1, 2015 Moving the EOS namespace to persistent memory 5

Hashtable performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10
00

0

 20
00

0

 30
00

0

 40
00

0

 50
00

0

 60
00

0

 70
00

0

 80
00

0

 90
00

0

 10
00

00

Ti
m

e
(m

s)

Number of entries

google::dense_hash_map
google::sparse_hash_map

std::map
PersistentHashtable

PersistentHashtable scales and can match google::dense hash map!

September 1, 2015 Moving the EOS namespace to persistent memory 7

Hashtable memory usage

 20

 40

 60

 80

 100

 120

 140

 160

 10
00

0

 20
00

0

 30
00

0

 40
00

0

 50
00

0

 60
00

0

 70
00

0

 80
00

0

 90
00

0

 10
00

00

M
em

or
y

us
ed

 (M
B)

Number of entries

google::dense_hash_map
google::sparse_hash_map

std::map
PersistentHashtable

PersistentHashtable has more memory overhead (due to the AVL tree).

September 1, 2015 Moving the EOS namespace to persistent memory 8

How can we optimise
our systems further?

• Infrastructure analytics

• apply statistical analytics to complete system:
storage, cpu, network, user app

• measure quantitative impact of changes on real
jobs

• predict problems and outcome of planned changes

• Easy!

• looks like physics analysis with infrastructure
metrics instead of physics data

• … really?

Non-trivial because…
• Technically

• needs consolidated service and application side metrics

• in production: Flume, HDFS, MR, Pig, HBase, Spark, …

• data collection shared with operational monitoring (Elastic Search)

• Conceptually

• some established metrics turn out to be less suitable for analysis of a large
ensemble with different & varying workloads

• “cpu efficiency” = t_cpu / t_wall ?

• “storage efficiency” = GB/s ?

• correlation in time does not imply causal relation

• Sociologically

• better observe “rule of local discovery”

• people who quantitatively understand infrastructure metrics are busy running
services — Always …

Gentner/PhD student: Christian Nieke

Initial findings & surprises

• Some hidden / unknown (ab-)use patterns

• really hot files: replicate file and access paths

• really remote files: some users try working via the WAN  
(eg 120 ms RTT without enabling vector reads etc)

• software bugs: users writing 1PB a day in two replicas
without noticing

• In large distributed systems neither users nor service providers
alone can easily spot even significant optimisation options

• started expert working group across IT services and
experiments

Thank you! Questions?

