
CONCURRENCY OUTLOOK
USING CMS DAS SERVICE

Valentin Kuznetsov
Cornell University



PREFACE
• Did you ever try to switch from traditional hard-drive to SSD? 

• This talk is not about new language per-se and neither any ads, 
promotions or requests to use it, but feel free to make your own 
conclusions.

• This was my hobby project done in spare time to learn new ideas, 
technique, technologies about concurrency

• Compare Apples to Apples using CMS DAS service, i.e. write code for 
real application in two languages and benchmark it on real user queries 
using different technologies and same application design

• the outcome speaks for itself and worth to share



DAS USE CASE
• DAS server needs to handle concurrency really well:

• support complex look-up queries and concurrent clients 

• single user query can resolve into N data-provider calls, currently we are 
in 1:10 - 1:100 regime

• single request requires multiple APIs, URLs, parsers and perform work in 
parallel

• data are stored into raw/merge cache 10k docs/second

• data retrieved from merge cache

• DAS client uses retry approach, place request and wait for results via 
periodic check of request id



DAS STATISTICS

2.5-3x



PROBLEM
• We expect the load will ramp up in coming years

• queries can become more complex size wise/number of calls to data-
providers, we are going to have more data, didn’t we?

• DAS requires and use concurrent design, but

• Current Python implementation still depends on GIL

• We can scale horizontally but it does not resolve issues with burst of 
concurrent requests, neither allow to utilize all CPU on a server

• Firing up Python subprocesses (or use multiprocessing module) does not 
solve the problem due to system limitations, sharing data-structures, 
connection pools, etc. I tried many ideas without luck of further 
improvements within current tool set.



POSSIBLE SOLUTION
• Switch to modern programming language with built-in 

concurrency primitives

• Go-language, developed by Google in 2007

• statically typed, syntax loosely derived from C, garbage 
collection, type safety, message passing via goroutines/
channels (similar to lightweight Erlang processes)

• code syntax is similar to python and C, way to easy to 
program than Erlang, provides GC, lightweight goroutines (a-
la unix &)



APPLES TO APPLES
• DAS python server : 26.5k lines of 

code plus third-party software 
(CherryPy, pycurl, Cheetah)

• Use pymongo driver.

• 3 thread pools, 175 threads, 
O(min) to start-up

• Parallel execution via thread pool

• DAS Go server : 4k lines of code 
(built-in template/web systems). 
Compile time 2 sec

• Use mgo driver

• No threads in code, at run time 15 
threads + goroutines handling the 
requests load, zero startup time

• Parallel execution via go func()

Use the same DAS python client to talk to both services
To simulate real clients we use python multiprocessing functionality
All tests were done on MacBookAir Intel Core i7, 8GB of RAM.



PERFORMANCE
Client time Server time

file dataset=/A/B/C queries, 300 clients, 300 queries => 80k files

client to Py−server, trial 1

client to Py−server, trial 2

client to Go−server, trial 1

client to Go−server, trial 2

0

200

400

600

0 100 200 300
number of clients

C
lie

nt
 ti

m
e 

(s
ec

)

Py−server, trial 1

Py−server, trial 2

Go−server, trial 1

Go−server, trial 2

0

50

100

150

0 100 200 300
number of clients

Se
rv

er
 ti

m
e 

(s
ec

)



CPU & RAM

0 100 200 300 400 500 600

0
40

80
12

0

DAS cpu statistics

time (sec)

C
PU

 (%
)

0 100 200 300 400 500 600

2
3

4
5

6
7

DAS mem statistics

time (sec)

M
EM

 (%
)

0 10 20 30 40

0
50

15
0

25
0

DAS_GO cpu statistics

time (sec)

C
PU

 (%
)

0 10 20 30 40

0
1

2
3

DAS_GO mem statistics

time (sec)

M
EM

 (%
)

DAS Py-server DAS Go-server



CMS SERVICES ISSUE

client to Py−server
client to Go−server

0

50

100

150

200

0 10 20 30 40 50
number of clients

C
lie

nt
 ti

m
e 

(s
ec

)

file, run, lumi dataset=/a/b/c
50 requests => 37k records

• DAS Go server can easily saturate 
CMS data-services

• When requested queries require 
complex look-up, CMS services fail 
to cope with load

• file, run, lumi dataset=/a/b/c look-up 
requires to get all blocks for dataset 
and query individual block to get file, 
run, lumi information

• 50 parallel queries resolves into 5327 
requests burst and I saw many 
failures on DBS side

• Therefore re-writing DAS may not 
solve all issues



• Easy to write, syntax somewhat similar to python and C/C++, e.g.

import “log”
func PrintArray(arr []string) {
for idx, val := range arr {

log.Println(idx, val) // Print index and value of array element
}

}
go PrintArray(someArray) // will execute code in parallel, a-la shell# cmd &

• Reach standard library, e.g. no need to write web server, thread pool, processes

• Built-in template support, Django syntax

• Built-in support to import from github, e.g. import “github.com/user/bla”

• go doc, go fmt, go get, go run, go build

• FAST, REALLY FAST compile time into static executable. Entire DAS server fits in 10MB 
executable file and takes only 2 seconds to compile.

GO CODE



SUMMARY
• Hobby project shows real potential for server side application (DAS 

server):

• Code reduction: 6 times

• Memory reduction: 1.5-2 times

• Run and scale on all CPUs natively, concurrency part of the language

• Client elapsed time decrease 10 times or more

• Learn Go syntax: 1 hour, reaching master level will vary on your ability

• Current DAS server is limited by GIL, hard to handle more than 300 clients 
at once. Go DAS server can easily scale to larger load, tested with 1000 
clients on a single node. 



REFERENCES
• Go language

• http://golang.org

• CSP model:

• http://en.wikipedia.org/wiki/Communicating_sequential_processes

• R. Pike, Concurrency Is Not Parallelism

• https://vimeo.com/49718712

• http://concur.rspace.googlecode.com/hg/talk/concur.html

• R. Pike, Concurrency Patterns: 

• http://talks.golang.org/2012/concurrency.slide

http://golang.org
http://en.wikipedia.org/wiki/Communicating_sequential_processes
https://vimeo.com/49718712
http://concur.rspace.googlecode.com/hg/talk/concur.html
http://talks.golang.org/2012/concurrency.slide

