Stripline BPM for the Drive Beam of the CLIC Two Beam Module

Alfonso Benot Morell Manfred Wendt

CLIC Workshop 18th-22nd January 2016, CERN

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

1. The CLIC Drive Beam

- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

1 - The CLIC Drive Beam

- Close proximity to PETS
 - 130 MW of RF power at 12 GHz propagating along the Drive Beam pipe ($fc_{TE11} = 7.64$ GHz).
 - Need to measure mW beam signals in proximity of MW RF pulses.
 - Suppression of 12 GHz PETS interference needed.
- Simple and economic design imposed by number of units and available installation space (<150 mm).
- Tight resolution and accuracy requirements.

BPM Requirements

N° BPMs	41580
Beam current	100 A
Bunch frequency	12 GHz
Bunch length	10 ps
Train length	242 ns
Aperture	23 mm
Spatial resolution	2 µm
Time resolution	10 ns
Accuracy	20 µm

- The CLIC Drive Beam
 Stripline BPM basics
- 3. Acquisition electronics
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

2 - Stripline BPM basics

- 130 MW PETS RF interference at 12 GHz needs to be suppressed.
 - BPM technology with a suitable frequency response.
- Two possible versions of stripline BPM:
 - <u>Compact</u>: downstream short-circuited electrodes, simple, low cost.
 - <u>Terminated</u>: 8-port, increased tunability, loop-through calibration possible.

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- **3. Acquisition electronics**
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

3 – Acquisition electronics

Analog signal shaping required for correct acquisition of short and intense BPM electrode signals \rightarrow Integration / Low-Pass (LP) filtering before ADC.

Position estimates as $x=k\Delta/\Sigma$, being k the linear calibration coefficient and Δ the difference, Σ the sum of opposite electrode signals.

- 3 Acquisition electronics
- Position along the pulse obtained by deconvolution between the electrode signals and BPM transfer response.
- Electrode signals sensitive to >10ns position changes.
- Loop-through calibration, 2 modes:
 - White noise
 - Pulse train

Loop-through Calibration V-Plane (same for H)

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics

4. Pick–Up Design

- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

4- Pick-Up Design

Parameter	Shorted BPM	Terminated BPM
Stripline length	25 mm	37.5 mm
Angular coverage	12.5% (45°)	5.55% (20°)
Electrode thickness	3.1 mm	1 mm
Outer radius	17 mm	13.54 mm
Ch. Impedance	37 Ω	50 Ω
Duct aperture	23 mm	23 mm
Resolution	2 µm	2 µm
Accuracy	20 µm	20 µm
Time Resolution	10 ns	10 ns

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

- CTBM, pos. 0645 and 0685
- Evaluate the influence of 12 GHz PETS interference (130 MW in CLIC) in the linearity of the device.
- Beam steered by corrector 0510.
- Reference BPMs: Inductive BPMs 0520 and 0750
- Three test scenarios: 2.4 MW, 40 MW and 60 MW PETS power interference at 12 GHz
- Damaged right electrode in BPM 0645 (only 2.4 MW and 40 MW tested for H-plane)
 → µ-welding foreseen

> Signals for i.e. (x,y) = (0, 3.25), 40 MW PETS power

Expected signal shape and levels

➤ Strange signals for BPM 0645 → Beam scraping electrode??

Stripline BPM unit CM.BPL0685

H RMS lin. error (µm)

Three test scenarios: 2.4 MW, 40 MW and 60 MW PETS power interference at 12 GHz

$x_{H,V} = (S_{H,V}^{-1})\Delta/\Sigma + EOS_{H,V}$				
arameter	2.4 MW PETS RF power (Beam current: 3.5 A)	40 MW PETS RF power (Beam current: 15 A)	60 MW PETS RF power (Beam current: 22 A)	EM Simulation
sensitivity S _v (m ⁻¹)	242.2 ± 7.4	$\textbf{221.9} \pm \textbf{10.6}$	$\textbf{148.1} \pm \textbf{9.4}$	155.27
sensitivity S _H (m ⁻¹)	$\textbf{276.9} \pm \textbf{6.2}$	$\textbf{298.0} \pm \textbf{15.8}$	N/A	155.27
offset EOS _v (mm)	$\textbf{1.82} \pm \textbf{0.08}$	$\textbf{2.11} \pm \textbf{0.18}$	$\textbf{1.17} \pm \textbf{0.25}$	0.00
offset EOS _H (mm)	$\textbf{-1.18} \pm \textbf{0.05}$	$\textbf{-0.83} \pm \textbf{0.05}$	N/A	0.00
RMS lin. error (µm)	105.30	212.32	58.19	0.00
RMS lin. error (µm)	82.41	86.63	N/A	0.00

Stripline BPM unit CM.BPL0685

Three test scenarios: 2.4 MW, 40 MW and 60 MW PETS power interference at 12 GHz

$X_{H,V} = (S_{H,V})^{-1}$)Δ/Σ	$+ EOS_{H}$
----------------------------	------	-------------

Parameter	2.4 MW PETS RF power (Beam current: 3.5 A)	40 MW PETS RF power (Beam current: 15 A)	60 MW PETS RF power (Beam current: 22 A)	EM Simulation
V sensitivity S _v (m ⁻¹)	242.2 ± 7.4	221.9 ± 10.6	$\textbf{148.1} \pm \textbf{9.4}$	155.27
H sensitivity S _H (m ⁻¹)	276.9 ± 6.2	$\textbf{298.0} \pm \textbf{15.8}$	N/A	155.27
V offset EOS _v (mm)	$\textbf{1.82} \pm \textbf{0.08}$	$\textbf{2.11} \pm \textbf{0.18}$	$\textbf{1.17} \pm \textbf{0.25}$	0.00
H offset EOS _H (mm)	$\textbf{-1.18} \pm \textbf{0.05}$	$\textbf{-0.83} \pm \textbf{0.05}$	N/A	0.00
V RMS lin. error (μm)	105.30	212.32	58.19	0.00
Η RMS lin. error (μm)	82.41	86.63	N/A	0.00

- Stripline BPM unit CM.BPL0685
- > Y during H-scan:

Parameter	2.4 MW PETS RF power (Beam current: 3.5 A)	40 MW PETS RF power (Beam current: 15 A)	60 MW PETS RF power (Beam current: 22 A)
std (Δ/Σ) _v	0.03	0.02	N/A
Tilt (mrad)	-17.4	13.5	N/A

• X during V-scan:

Parameter	2.4 MW PETS RF power (Beam current: 3.5 A)	40 MW PETS RF power (Beam current: 15 A)	60 MW PETS RF power (Beam current: 22 A)
std (Δ/Σ) _H	0.02	0.04	0.19
Tilt (mrad)	6.2	-9.2	-62.0

- Stripline BPM unit CM.BPL0685
 - Y during H-scan:

40 MW PETS RF 60 MW PETS RF 2.4 MW PETS RF power power power Parameter (Beam current: (Beam current: (Beam current: 3.5 A) 15 A) 22 A) 0.02 N/A 0.03 std $(\Delta/\Sigma)_{v}$ Tilt (mrad) -17.4 13.5 N/A

• X during V-scan:

Parameter	2.4 MW PETS RF power (Beam current: 3.5 A)	40 MW PETS RF power (Beam current: 15 A)	60 MW PETS RF power (Beam current: 22 A)
std (Δ/Σ) _H	0.02	0.04	0.19
Tilt (mrad)	6.2	-9.2	-62.0

Resolution test using Singular Value Decomposition (SVD):

- Separate <u>systematic beam effects</u> (i.e. betatron motion, cavity phase/energy errors, RF jitter...) from <u>uncorrelated BPM noise floor</u>
- P=999 consecutive, synchronous shots (22 A beam) analysed for all M=9 BPMs in the Drive Beam of the Two-Beam Module

$$B = U \cdot S \cdot V^{T}$$
, where:

- $B_{P \times M} \rightarrow Position data for all BPMs$
- $U_{PxP} \rightarrow Temporal eigenvectors$
- $S_{PxM} \rightarrow Diagonal matrix (eigenvalues <math>s_{ii}$)
- $V_{M \times M} \rightarrow$ Spatial eigenvectors
- s_{ii} give correlation level between U and V
- Set $s_{ii} = 0$ in the high correlation region and recompute $B \rightarrow B'$
- σ (stdev) of columns of B' : resolution for each BPM. For our prototypes:
 - BPM0645 (#5): 1.4 μm (H) , 0.5 μm (V)
 - BPM0685 (#6): 2.4 μm (H) , 2.5 μm (V)

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

6 – Noise issues

- Unwanted noise observed in the absence of beam / CAL inputs → up to ~100 ADC counts <-> ~25mV → Unacceptable
- Not present when cabling is removed
- Uncorrelated component → Ground loop
- Correlated component → ~230 kHz interference (switched power supply?)
- Mitigation strategies tested:
 - Transformers
 - Inductive common mode chokes
 - Capacitive DC blocks
- Reduced to ~15 ADC counts
 ←→ ~3.75mV (Acceptable) by disconnecting calibrator during beam operation.

- 1. The CLIC Drive Beam
- 2. Stripline BPM basics
- 3. Acquisition electronics
- 4. Pick–Up Design
- 5. Beam Tests at CTF3
- 6. Noise issues
- 7. Conclusions and future work

6- Conclusions and future work

- Stripline BPM with terminated electrodes
 - Improved suppression of 12 GHz PETS interference
 - Acquisition electronics for improved time resolution and calibration functionality
 - Resolution results close to specified values

- Plans for 2016
 - Linearity/Sensitivity tests:
 - Separate beam scans for units 0645 and 0685.
 - Test H-plane of unit 0685 with 60 MW PETS power.

Acknowledgments

A. Faus-Golfe

B.P. Bielawski, D. Gudkov, T. Lefèvre, F. Locci, S. Magnoni, L. Søby, M. Wendt

J.M. Nappa, S. Vilalte

CLIC Workshop Organization

Thank you

2 - Stripline BPM Basics

Terminated version (8 ports)

Passive filters for DB Stripline BPM

