

TCAD simulations of HV-CMOS pixel structures

Matthew Buckland
CLIC workshop

21St January 2016

Outline

- Overview of CCPDv3 and TCAD
- Goals of the TCAD simulations
- CCPDv3 simulated structure
- Comparison between 2D and 3D results
- 3 pixel structure
- Summary

CCPDv3 and TCAD

CCPDv3:

- HV-CMOS sensor, contains amplifier, peaking time ~120ns
- Operated at high voltage to maximise the depletion region
- Improves performance due to decreased detector capacitance and lager signal amplitude
- Sensor is capacitively coupled to readout chip via glue
- Hence low cost and low mass, compared to bump bonding

TCAD:

Is a finite element simulation used for semiconductor fabrication and device operation

- A powerful tool for studying the behaviour of complex structures
- e.g. doping profile, electrical behaviour and mip simulations

I. Peric

Goals of HV-CMOS TCAD studies

- Understand features of the measurements better e.g. transient signal development
- Improve the comparison between simulation and measurements
- Use as input for simulation chain of sensor and readout chip
- Want to check the validity of the 2D simulations by comparing to 3D ones
- Limitations of 3D simulations:
 - Very memory intensive, using large amount of RAM, long run times
 - Has a trade off between mesh size (convergence) and memory
 - Reduced the model with less implants to reduce memory
- Hence 2D is much quicker but is it realistic?

CCPDv3 layers to be simulated

- Layers obtained from the design file (gds layout file)
- Full implant structure, no metal lines shown

2D Cut

- Not an exact cut of CCPDv3
- There is no ideal cut as it is not symmetric
- Adjusted some layers so that contacts could be made

Simulated TCAD structures

- 3 structures simulated: 2D full, 2D reduced and 3D reduced
- 2D full has all the implants and contacts
- The 2D reduced and 3D reduced structures both have the same implant structure
- 100 μm thick 31.5 μm wide
- "Net active" is the doping concentration

21/01/2016

E-field comparison

- Biased to -60V, operating voltage of device
- All electric fields are roughly the same, higher value at edges of the deep n-well
- One difference in the 2D full model is a higher electric field value in the oxide and in the substrate because of the metal layer

Leakage current comparison

- Breakdown of real device was measured to be -93V
- See breakdown in 2D full at ≈ -88V and for 3D reduced ≈ -90V
- Breakdown in 2D reduced greater than -100V due to no metal layer

Breakdown field of silicon ≈ 3x10⁵ V/cm

21/01/2016

Mip simulation

- In TCAD specify time, position and charge deposition of the particle
- Charge is then instantaneously placed
- The mip passes the centre of all three structures
- Deposits ≈ 80 eh pairs per micron
- Transient simulation from 0-10µs is performed at bias -60V
- Real sensor is 250µm thick but found only 100µm contribute to signal hence simulation is quicker

Mip signal

- 3D reduced model has the largest peak but quickly drops to the lowest value
- The 2D full model has larger current value than the 2D reduced model
- After 10µs 3D reduced collects the most charge: around 200e- more than 2D full and 900e- more than 2D reduced
- May be due to coarser mesh

2D full 3 pixel structure

- 3 pixel structure with a pixel pitch of 25µm
- Width 81.5µm, thickness 100µm
- Labelled pixel 1, 2 and 3 from left to right
- Look at different resistivities 10 Ω cm, 80 Ω cm, 200 Ω cm and 1000 Ω cm

Electric field, -60V, 10 Ωcm

- Very low outside depletion
- Highest around edges of deep n-well
- See low field inside deep n-well
- Field curves round to edges due to geometry of the structure
- Not true field lines, streamlines

Electric field for different resistivities, -60V

 Field extends the most under the deep n-well

 Pockets of low field under bias ring

 High field (red) is not as deep for the higher resistivities

10 Ωcm 200 Ωcm

5.000e+05 2.321e+03 1.077e+01 5.000e-02

Abs(ElectricField-V) (V*cm^-1)

2.321e-04

1.077e-06

5.000e-09

Breakdown for different resistivities

- The breakdown increases with resistivity
- The higher resistivities all breakdown \approx -100V suggesting the implant structure is the limiting factor

Depletion depth for different resistivities

As expected the larger the bias and resistivity the larger the depletion depth

Mip signal for different resistivities, -60V

- Send a mip through the centre
- Similar current peak height and time for all resistivities
- After 0.5 ns 10 Ωcm is slower
- The other resistivities collect similar charge
- However after 10 μs 1000 Ωcm collects the most charge by \approx 1000 e^-

Mip scan collected charge 2ns

- Look at 10 Ωcm, -60V
- Mip scan across the structure, perpendicular to surface
- From 1.75µm (-39µm) to 79.75µm (+39µm) in 1µm steps
- Centre of device is 40.75µm
- After 2ns not as much charge is collected when mip passes through deep n-well
- Also pixels collect 0 charge when the mip is far enough away,
- No diffusion from these regions yet
- Lowest collected charge at edges

Charge (e

Collected

1200

1000

800

600

400

200

-30

-20

-10

20

Distance from centre (µm)

30

Mip scan collected charge 100ns and 10µs

- Look at 10 Ωcm, -60V
- After 100ns two side pixels collect more charge (edge effect),
- Start to see diffusion to neighbouring pixels
- Edges now collect more compared to 2ns, hence this is due to diffusion

Summary

- 2D 3D comparison:
 - Agreement between the models in electric field
 - IV curves are similar for 2D full and 3D reduced
 - Difference is less than 10% for charge collection after 10µs
 - Reasonable to use the 2D full model
- 3 pixel structure
 - Breakdown and depletion depth increase resistivity
 - Larger resistivities collect more charge, 1k Ωcm significantly more after 100ns, 50% larger than 200 Ωcm
 - After 100ns charge collection is approximately uniform
 - Signal used for input of the simulation of CCPDv3 ASIC part

Backup

E-field for different metal widths, -100V, 2D full

IV Curve M1 comp, 2D full

- The closer the M1 lines are the lower voltage at which breakdown will occur
- Around -88V for the correct M1 lines

E-field depth, 3 pixel structure

