

Experiment on the interaction of electron bunch train with a W-band wakefield structure at AWA: high power and high gradient

Dan Wang On behalf of the AWA and Euclid group

CLIC Workshop 2016 Jan 18-22

Outline

- Motivation
- Method
- Single bunch experiment
- Bunch train experiment
- Summary

Motivation: AWA map

Method: design of the W-band* PETS

Power Extraction and Transfer Structure : PETS

Total length of the grooved structure : 12 cm

When fixed the gap = 0.94 mm : $f_0 = 91 GHz$, $\lambda_0 = 3.3 mm$

70th harmonic of L-band (1.3 GHz) RF at the AWA

* Similar to Valery Dolgashev (SLAC) 100 GHz structure

Method: wakefield (RF) generated by single bunch

Duration of rf pulse:

$$\tau_s = \frac{L}{v_g} - \frac{L}{c}$$

$$3.4[ns]$$

Gradient in the structure : $E_s = 2k_L q_b F(\sigma_z)$

 $\underline{26.6[MV/m/nC]} \cdot F(\sigma_z) \cdot q_b$

RF power :

$$P_s = \frac{E_s^2 v_g}{4k_L(1-\beta_g)}$$

5

Method: enhance power with drive bunch train

RF bucket with adjustable time structure :

Total RF peak power:

$$P_f \propto (mE_s)^2$$

Method: drive beam line at AWA

Single (sub) bunch charge: q_b	5 nC	10 nC
Bunch RMS length: σ_z (mm)	0.50	0.60
Formfactor at 91 GHz: $F(\sigma_z)$	0.60	0.37
RMS beam size: σ_{χ} (mm)	0.2	0.35

Single bunch experimental set up

Detectors :

- 1. Energy meter (calibrated): RF output energy
- 2. Spectrometer: energy loss of electron beam

Single bunch experimental results_(1)

'effective charge': charge contribute to the wakefield

Beam dynamics simulation code: ASTRA

Transmitted charge after (ICT 2): 1nC Effective charge convert to the RF: 2nC

RF simulation code: CST

2.6 mJ (Fig.a) = 1.3 MeV (Fig.b) * 2nC

energy conservation : beam energy loss = RF output

RF: 0.77 MW * 3.4 ns

W-band structure

energy meter

IC1

ICT 2

Single bunch experimental results_(2)

Power vs. drive bunch charge

Figure out the effective charge, we get good agreement with simulation:

$$\rightarrow P \propto Q_b^2 \cdot F (\sigma_z)^2$$

RF simulation code: CST

RF frequency measurement set up

Detectors :

- 1. Energy meter (calibrated): RF output energy
- 2. Spectrometer: energy loss of electron beam
- 3. Michelson interferometer: RF frequency measurement

RF frequency measurement results

Frequency measurement of the W-band structure:

Challenges : diagnose the high frequency RF envelope

? No detector to look at the 91 GHz RF pulse directly, currently oscillator (up to 60 GHz at most)

? No easy way to figure out how to alignment the bunch train in right wakefield phase

Highlight : two wakefield interferometry method

? No detector to look at the 91 GHz RF pulse directly, currently oscillator (up to 60 GHz at most)

? No easy way to figure out how to alignment the bunch train in right wakefield phase

two wakefield interferometry method :

Bunch train experimental set up: laser train

Generation of tunable bunch train:

- 1. UV laser slitter
- 2. Movable mirror on stage

Initial interval around : $z_0 = 230 mm$ (1.3 GHz / 0.769 ns)

2-bunch train experimental results

2-bunch train experimental results

3-bunch train experimental results

With wakefield interferometry method
→ Precise control of RF phase (bunch1~3
loss energy of :1.3 MeV, 3.2 MeV, 4.4MeV)
→ Generate maximum RF power

Derived wakefield gradient $E_{peak} = 85 MV/m$ (high gradient)

Derived output RF pulse: $P_{peak} = 5 MW$ (high power)

Plan: increase the power and gradient

With structure attenuation coefficient α : $E_t = NE_s ((1 - e^{-\alpha L}) / \alpha L)$

Plan: accelerate the witness beam to higher energy

Energy gain of witness beam ~ 20 MeV after the structure (~0.12 m)

Summary

- 1. We measured 5 MW RF @ 91.3 GHz, wakefield gradient is 85 MV/m. The W-band structure turns out to be a high power RF generator & also compact /advanced accelerator of high gradient
- 2. The newly-developed two-beam wakefield interferometry method is an effective diagnostic for wakefield, which benefits the precise RF phase control in advanced wakefield accelerators.
- 3. We plan on the 100 MW & 400 MV/m in the W-band structure in future (promising)

Acknowledgement

- S. Antipov, C. Jing and J. Qiu from Euclid
- M.E. Conde, J.G. Power, W. Liu, E. Wisniewski, D.S. Doran, C. Whiteford, G. Ha, J. Shao, Q. Gao, N. Neveu and W. Gai in AWA group
- V. Dolgashev from SLAC
- D. Schegolkov and J. Simakov from LANL
- T. Benseman and Y. Hao from ANL
- P. Piot from FNAL

Thanks for your attention

Back up

Method: parameter of the PETS

Table. parameters of the W-band PETS

f_0	88.0 ~ 94.0 GHz
2a	0.80 ~ 1.20 mm
<i>Z</i> _p	1.10 mm
<i>Y</i> _{max}	1.25 mm
x_{max}	0.90 mm
L	123.20 mm
eta_g	0.105 #
Q	2560 #
R/Q	83.3 kΩ/m [#]
k_L	$1.33 \times 10^{16} \text{V/(C} \cdot \text{m})$ #
	f ₀ 2a Zp Ymax Xmax L βg Q R/Q k _L

*Frequency f_0 can be tuned by adjusting gap 2a # Value at $f_0 = 91$ GHz

W-band RF generation with two electron bunches

26