





# Dark current imaging and Observation of local field emitters

Jiahang Shao on behalf of many collaborators

CLIC Workshop 2016, 18-22 January, CERN



### **Outline**

- Background and motivation
- High-resolution imaging principle in RF structures
- Experiment setup at Argonne Wakefield Accelerator Facility (AWA)
- Beam dynamics simulation
- Experiment results
- Summary and discussion
- Acknowledgement

### **Background and motivation**

#### Field emission

- Critical role in high gradient devices, cold cathode electron sources
- Strongly coupled to the RF breakdown phenomenon

#### Puzzling questions still remain after a century study

- High field enhancement factor, low emission area
- Origin and properties of emitters
- Surface evolvements during conditioning

- ...

#### Real time high-resolution field emission observation

- Will significantly improve our understanding of field emission
- Likely lead to breakthrough in high gradient devices

### High-resolution imaging in RF structures

#### Difficulty

- Wide energy spread leads to blurring





Energy spread of field emission current from an RF gun







**ASTRA** simulation

### High-resolution imaging in RF structures (continue)

#### Solution

- Use a collimator to select electrons with certain energies



### Experiment setup at AWA

#### Photocathode gun

- Single cell, 1.3 GHz
- Detachable cathode

#### Diagnostics

- Directional coupler, pickup
- PI-MAX Intensified CCD

#### Apertures

- φ8 mm, φ1 mm, φ0.5 mm, φ0.2 mm

#### Cathode

- New shaped ones from Tsinghua









### Beam dynamics simulation

#### Phase/energy selection

- Electrons with up to three phases and two energies can pass through the aperture





### Beam dynamics simulation (continue)

#### Phase/energy selection

- φ 0.2 mm collimator, 0 initial emittance











### Beam dynamics simulation (continue)

- Influence of aperture size and initial emittance
  - Resolution better than 100 μm is expected in the experiment





### **Experiment results**

#### Cathode preparation

- Very fine finishing Cu cathode from Tsinghua
- Sputter 100 μm thick Au on the rounded surface to suppress field emission
- Sputter 100 μm thick Mg spots on the flat surface to increase field emission

- Strong emission from Mg is expected





- High-resolution imaging
  - PI-MAX ICCD, 10 μs exposure, 50 μm/pixel, using external trigger

No aperture 20 shots



φ8 mm 20 shots

φ1 mm 100 shots



φ0.2 mm 100 shots



- Measure field enhancement factor (β) of each emitter
  - Use φ8 mm aperture to ensure nearly constant capture at various field level
  - Subtract background due to X-ray, secondary emission, reflection,...
  - Similar  $\beta$ ~70 of the background and the emitters



emitter

background





- SEM images after the experiment
  - Several breakdown spots observed on the surface



- Overlap of emitters to breakdown spots
  - Dark current image transformation based on magnification and rotation angle from ASTRA simulation

Dark current imaging



#### Breakdown spots distribution





- Overlap of emitters to breakdown spots
  - Most emitters overlaps with breakdown spots
  - Needs more SEM to reveal other emitters



### Summary and discussion

#### Conclusion

- High-resolution dark current imaging has been achieved
- Field enhancement factor has been measured for each single emitter
- Most emitters overlap with breakdown spots

#### Future study

- More SEM to reveal other emitters
- Develop a new gun for higher resolution and shorter cathode switching time
- Use more cathodes with pre-defined pattern (exotic material, sand-blasting,...)

#### Discussion

- What is field enhancement factor?
- Why strong emission from Mg has not been observed?
- What's the origin for the rest emitters?
- Why some breakdown spots don't emit?

- ...

### Acknowledgement

- The work at AWA is funded through the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. The work at Tsinghua University is supported by National Natural Science Foundation of China under Grant No. 11135004
- This work is in collaboration with Wei Gai, Chunguang Jing, Huaibi Chen, Jiaru Shi, Sergey V. Baryshev, and Sergey A. Antipov
- All staffs in AWA group for their great help and support for experiments
- Tsinghua machining shop for preparing new-shaped cathode
- Dr. Klaus Floettmann from DESY for discussing about the ASTRA simulation

Welcome to High Gradient Workshop at Argonne National Laboratory on June 6-8, 2016 (the most beautiful season of Chicago)



International Workshop on Breakdown Science and High Gradient Accelerator Technology (HG2016)

6-8 June 2016 Argonne National Laboratory

Details: https://indico.hep.anl.gov/indico/conferenceDisplay.py?confld=963



Organizing Committee Members: Gerardo D'auria (Elettra Sincrotrone Trieste) Wei Gai (ANL) Toshiyasu Higo (KEK) Chunguang Jing (Euclid) Jiaru Shi (Tsinghua University) Sami Tantawi (SLAC) Walter Wuensch (CERN)

# Backup



### Elements in C2



## **Background subtract**

φ8 mm aperture



blank



