

CLEX Module results and CALIFES experiments

W. Farabolini on behalf of the CTF3 team

Experiments with CALIFES in 2015

23 days W. Farabolini & Drive Beam Team Test Beam Module : Wed 20/1 at 9:10 Wake Field Monitors : 54 days R. Lillestol et al. • High Resolution Cavity BPMs : 20 days J. Towler Tue 19/1 at 11:20 • Interferometric OTR : 13 days R. Kieffer Mon 18/1 at 16:55 • Beam alignment in Quadrupoles : 12 days N. Aftab, S. Javeed Mon 18/1 at 16:15 N. Aftab, S. Javeed Mon 18/1 at 16:15 • Califes Cavity BPMs calibration : 6 days Mon 18/1 at 16:35 • Beam Loss Monitor: M. Kastriotou 1 day • Girders positions control : 5 days V. Rude, M. Duquenne Tue 19/1 at 16:55 Irradiation Test Bench : 11 days R. Alia et al. Strip Line BPMs A. Benot Morell Wed 20/1 at 10:10 Miscellaneous : 30 days (beam preparation, development, studies non referenced in the log-book...) Total: **175 days** (users x days) 5 weeks Klystron MKS30 for PHIN : Very high beam reliability (almost no non-programmed unavailable day)

Beam day x experiments with CALIFES in 2015

Miscellaneous

Shutdown Periods and New Installations

17 Dec. 2014 – 9 Mar. 2015

Second Super-structure on the TBM

- Survey of the whole line
- In situ RF measures with network analyser
- RF power chain calibrations (20)

3 High Resolution Cavity BPMs on motorized stages (J. Towler M. Wendt)

Irradiation Test Bench (E. Del Busto)

- Rare days of beam unavailability (Laser Pulse Picker power supply, Klystron focalisation coil power supply)
- Nearly no klystron trips (19 411 working hours)

Some Laser stability concerns

Double heads shape for Laser and Beam

- and charge jitter
- Laser Lab. Air conditioning system replaced
- Some problems with laser synchronisation and phase jump (LLRF team knows how to fix) 20/01/2016 CLIC Workshop 2016

(LB

Test Beam Module (TBM) control

TBM powered by DB – no RF priming

Consistent power measurements at the 4 ACS inputs (excepted ACS1). Drive beam 23 A

(LB

Power In / Power Out = 2.44 (S₁₂ = 0.64)

- Consistent power measurements at the ACS1 & 2 outputs
- Discrepancies for ACS3 & 4 outputs
- Rather consistent between Diode and IQ measures

20/01/2016

TBM powered by DB – with RF priming

Comparison with PETS output power

PETS 1: 55.6 MW PETS2: 4.7 MW

ACS1: 20.2 MW ACS2: 22.6 MW sum: 42.8 MW ACS3: 2.7 MW ACS4 : 2.7 MW sum: 5.4 MW

Not really consistent : 23 % power loss from PETS 1, even if we know that ACS1 power is under valuated

Comparison with energy gain

DB

TBM energy gain: 43 MeV 20/01/2016

Power input on each ACS: P_{in} = 10.4 MW (ACS1 rescaled)

Nominal TBM energy gain:

$$E_{gain} = \frac{100 \times 0.23 \times 4}{\sqrt{42.6}} \sqrt{P_{in}} = 45.5 \text{ MeV}$$

The discrepancy can be sought in the phase errors

Phases between structures

RF distribution with WG spacers to correct phase distribution

DB

 $\Phi_1 DB$

At 180°

Output phases from structures **Phase control** Correct Phase error **Phase error** if: without with generated recirculation recirculation power -6 ° -4 ° No control $\Delta \Phi_{21}$ DB Equal $\Delta \Phi_{43}$ DB Equal -13 ° -12 ° No control $\Delta \Phi_{31}$ DB -31 ° -6 ° Priming control Equal

CALIFES phase control

cos(15.5°) x 45.5 = 43.8 MeV

20/01/2016

PB

generated

power

 $\Delta \Phi_{21} \, \text{PB}$

 $\Delta \Phi_{43} \, \text{PB}$

 $\Delta \Phi_{31} \, \text{PB}$

 $\Phi_1 PB$

CLIC Workshop 2016

0 °

0 °

RF Power generated with the Probe beam

- Much lower power (< 100 kW)
- Power calibration not adapted but still possible to extract a phase

Diode calibration for all RF lines injecting power after the 60 dB coupler

Structures reflected power

• ACS4 Reflected Power during 130 ns

• ACS4 Reflected Power appears after 120 ns and lasts 120 ns after the end of the RF pulse

- ACS filling time: 65 ns
- ACS4 reflection default close to the end the structure (output port ?)

20/01/2016

Network analyser measure during installation

- This problem was revealed after the structure installation
- Default of transmission partly explained the ACS3/ACS4 outputs power discrepancy

Probe beam phase scan

- Probe beam phase vs. Drive beam phase changed by 1 degree at every shot
- Power generated by drive shows fluctuation (especially with priming)

Input/Output ratio clearly shows the beam loading.

Beam shape during phase scan

Simulations with 2 different phases

Highest energy gain obtained (so far)

ACS2 input: 45 MW

PETS 1 output: 85 MW

With DB 15 A (factor 4), pulse length 140 ns Limited by BD

TBM energy gain: 58 MeV

Vacuum activity during RF tests

20/01/2016

Conclusion

- The CALIFES beam has bean extensively used for many experiments
- Concerning TBM tests and considering the complexity of the RF scheme more studies and DB time are necessary this year
 - Improve the structures conditioning
 - Improve some RF calibrations
 - Validate the module performances
 - Study the beam quality after acceleration by the TBM
 - Test all the subsystem in integrated conditions (WFMs, girder alignment, BLM...)

Thank you for your attention