

# Status of the NbTi Wiggler and Experimental Program at ANKA

#### Axel Bernhard, for the KIT-CLIC collaboration

Laboratory for Applications of Synchrotron Radiation (LAS)





www.kit.edu

# Acknowledgements



#### BINP

Alexey Bragin, Nikolay Mezentsev, Vitaliy Shkaruba, Valeriy Tsukanov, Konstantin Zolotarev

#### KIT

Sara Casalbuoni, Andreas Grau, Stefan Gerstl, Julian Gethmann, Steffen Hillenbrand, Erhard Huttel, David Saez de Jauregui, Nigel Smale

### CERN

Paolo Ferracin, Laura Garcia Fajardo, Yannis Papaphilippou, Daniel Schoerling, Hermann Schmickler







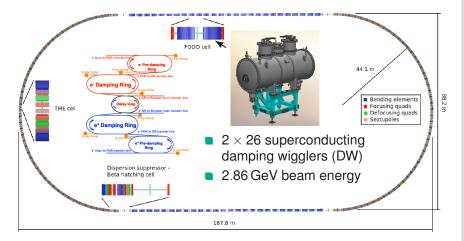


# Outline



Introduction

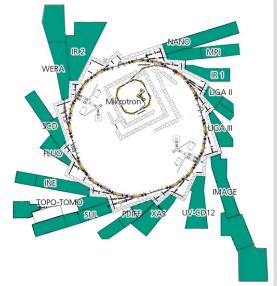
Design of the CLIC damping wiggler prototype


Results of the acceptance tests Cryostat performance Magnetic performance

Installation and further plans

Conclusion

# Introduction — CLIC damping rings

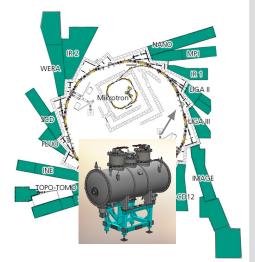





Y. Papaphilippou et al. IPAC '12; V. Syrovatin, priv. comm.

# Introduction — ANKA



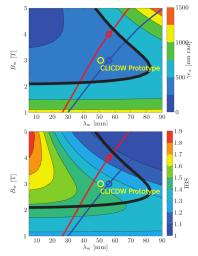



- Synchrotron radiation facility at KIT
- Normal user operation:
  - 2.5 GeV
  - 200 mA
- Special operation modes:
  - 1.3/1.6 GeV, low α<sub>c</sub>
  - variable filling pattern

# Introduction — CLIC-ANKA collaboration



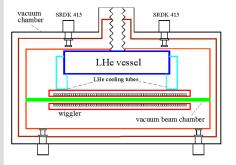
- Wiggler parameters identified interesting for both CLIC DW and as light source for ANKA
- Wiggler developed and manufactured by the Budker Institute for Nuclear Physics (BINP), Novosibirsk
- Wiggler operated at ANKA:
  - Light source for IMAGE beamline producing hard X-rays
  - Long-term reliability test for CLIC DW




# Design of the CLICDW prototype: Design parameters



| Basic magn. design           |            |
|------------------------------|------------|
| Period $\lambda_W$           | 51 mm      |
| Magn. gap                    | 18 mm      |
| Flux density B <sub>v0</sub> | 3 T        |
| Main poles                   | 68         |
| Matching poles               | 1/4, 3/4   |
| Winding geometry             | horizontal |
| Radiation (2.5 GeV, 200 mA)  |            |
| К                            | 14         |
| Power                        | 13 kW      |
| $\epsilon_{ m crit}$         | 12 keV     |
| SC technology                |            |
| Wire                         | Nb-Ti      |
| Wire diameter (bare)         | 0.85 mm    |
| SC:Cu ratio                  | 1.1:1      |
| Filaments                    | 312        |

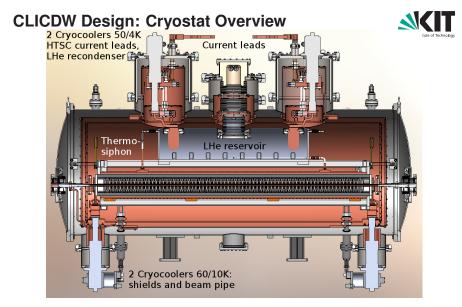

-



F. Antoniou; D. Schoerling et al, PRSTAB 15 (2012)

# **CLICDW Design: Conduction cooling**



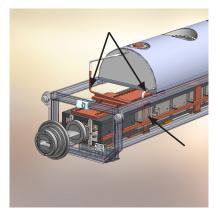


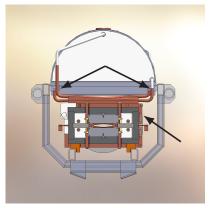

N. Mezentsev et al, Final Design Report on CLIC damping wiggler test device

Figure: Schematic cryogenic concept

# Conduction cooling

- non-standard for sc wigglers
- minimized magnetic gap
- no pressure increase on beam pipe during quench
- easy heat extraction from beam pipe
- facilitates modular cryostat design





#### N. Mezentsev et al., Final Design Report on CLIC damping wiggler test device

# **CLICDW Design: Magnet cooling**

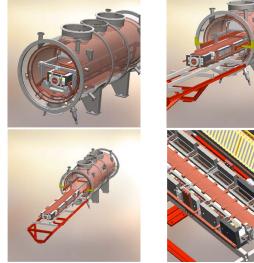


Top coil cooled through thermosiphon pipes at both ends
Bottom coil connected to top coil via Cu heat links.





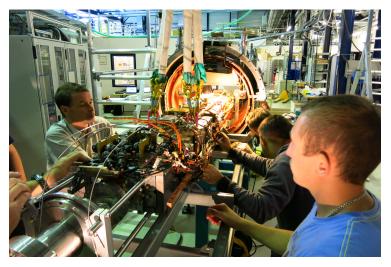
Figures: V. Syrovatin, priv. comm.


# **CLICDW Design: Modular cryostat**



ANKA:

test of different coils and beam pipes


#### CLIC-DR: repair / maintenance

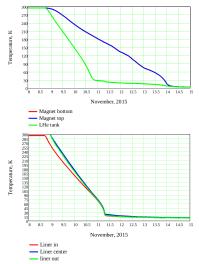


Figures: N. Mezentsev et al.: Final Design Report on CLIC damping wiggler test device

### **Factory and Site Accpetance Test Results**






#### Figure: The magnet assembly is slided into the cryostat

12 2016-01-18 Axel Bernhard, for the KIT-CLIC collaboration - Status of the NbTi Wiggler and Experimental Program at ANKA

# Test results: Cryostat performance

Karlsruhe Institute of Technology

- Cryogen-free cool-down procedure with N<sub>2</sub> heat tubes and condensation of He gas
- Magnet reaches LHe temperature within 5 days
- In closed-cycle operation with release valve closed the magnet reaches 3.1 K (reduced helium boiling temperature due to underpressure)
- Modulatity and "easy" access to magnet and beam pipe successfully demonstrated

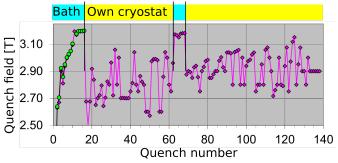


N. Mezentsev et al., CLICDW SAT report



# Test results: Cryostat performance II

Performance under heat load to beam pipe


 20 W heat load to exit part of the beam pipe, 40 h, magnet charged

14 2016-01-18 Axel Bernhard, for the KIT-CLIC collaboration - Status of the NbTi Wiggler and Experimental Program at ANKA



# Test results: Magnet performance I





N. Mezentsev et al., CLICDW SAT report

#### Bath test

- Training: 16 quenches
- 3.2 T stable after 11 quenches

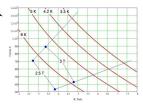
Own cryostat

- Up to 3.1 T reached during ramp
- but no stable operation above 2.6 T (holding quenches occurring after minutes to hours)

# Test results: Magnet performance II

Holding quenches: Magnet modifications

Measures taken


- suspicious coils exchanged
- all splices (~ 300) thermally connected to heat sinks
- magnet design modified:
  - gap decreased to 17 mm
  - period increased to 51.4 mm, Cu-foils as additional heat sinks inserted

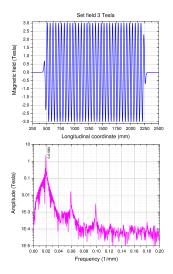
Result

2.95 T stable at 3.1 K to 4.5 K








Load lines of inner and outer coil section

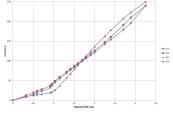
# Test results: Magnet Performance III

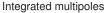


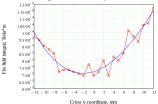
Hall probe scans

- Hall probe scans with array of 5 probes
- at 7 field levels 0 T to 2.95 T
- peak-to-peak variation  $< \pm 1$  %
- roll-off < 0.3 %</p>
- however, mutual calibration and alignment not sufficient to determine local multipoles




# Test results: Magnet Performance IV

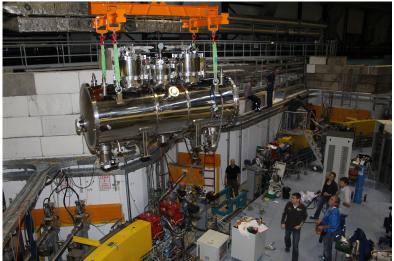




Field integrals

- field integral measurements with stretched wire with DC current
- coil currents adjusted for zero 1<sup>st</sup> and 2<sup>nd</sup> field integral
  - $I_1 \le 5 \times 10^{-5} \,\mathrm{Tm}$ •  $I_2 \le 5 \times 10^{-5} \,\mathrm{Tm}^2$
- field integrals as function of transverse position x: integrated multipoles
  - int. quad.:  $1 \times 10^{-3}$  T
  - int. sext.: 2.5 × 10<sup>-1</sup> T m<sup>-1</sup>

#### Currents for zero field integrals








N. Mezentsev et al., CLICDW SAT report

# Installation and further plans





### 2015 Dec. 9th: The wiggler on its way into the ANKA storage ring

# Plans for commissioning



 Commissioning and final acceptance test with beam is foreseen for 2016 Feb. 1-12

- Planned test and measurements:
  - beam orbit and tune as a function of the wiggler field, refine orbit correction tables, establish tune correction if necessary
  - orbit stability at low wiggler field
  - tune as a function of local vertical orbit bumps, identify median plane, decide on alignment correction, iterate step 1
  - chromaticity as a function of the wiggler field
  - check maximum stable field with full electron beam current
  - simulate CLIC-DR operation conditions with additional heat load to beam pipe



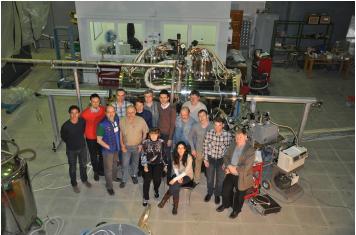
In upcoming machine development shifts an advanced experimental program in close collaboration with CERN is envisaged, including

- SR-based beam-size / emittance measurements
- grow-damp measurements (damping time changes)
- emittance coupling vertical/horizontal
- Iow α<sub>c</sub> at 1.3 GeV
  - bunch structure, CSR bursting patterns
  - multibunch effects
- further ideas and suggestions wecome!

# Conclusions



The Nb-Ti CLIC damping wiggler prototype with


- conduction cooling
- modular design

has passed Factory and Site Acceptance Tests and is installed in the ANKA storage ring

- cryogenic system: performance outstanding
- magnet:
  - design modification/parameter relaxation necessary to reach specified field
  - issue of "holding quenches" still not understood and remaining subject to investigation
- wiggler ready for commissioning and final acceptance test with beam
- we are looking forward to the further experimental program with the wiggler at ANKA



# Thank you for your attention!

