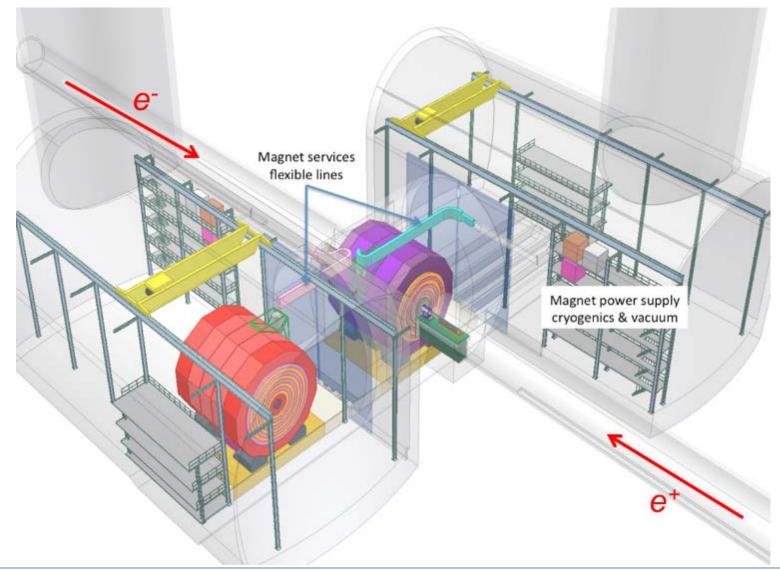
MDI Status and Plans

Michele Modena and Lau Gatignon on behalf of the MDI working group

Outline

- MDI (recall of CDR and previous status)
- Studies done and ongoing
 - Studies for longer L*: impact on the various systems
 - 2. IP feedback
 - 3. Muon scrapers study
- Conclusion and future plans

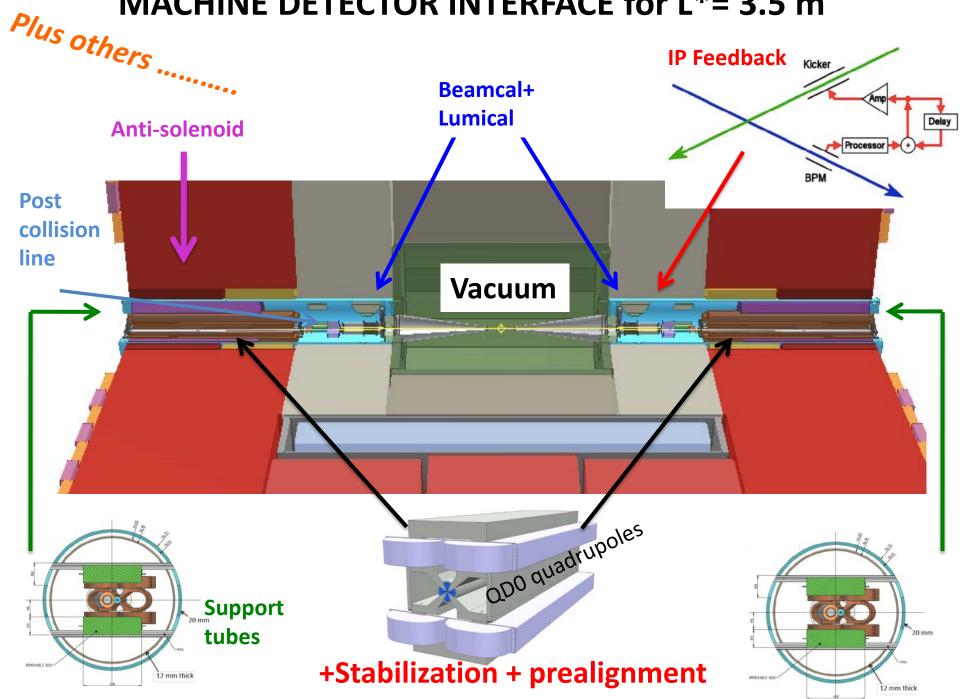


What is MDI

- The Machine Detector Interface must ensure optimum luminosity for the experiment(s) with minimal backgrounds. It includes the integration of all systems and infrastructure.
- The baseline for the CDR was based on a concept with <u>two</u> <u>detectors</u> operating in <u>push-pull mode</u> and with the final focus quadrupoles QD0 as close as possible to the interaction point ($L^* = 3.5 \text{ m}$, i.e. INSIDE the detectors).
- The MDI design and studies include the studies for the QD0 design as well as its stabilisation and pre-alignment, but also IP feedback, BeamCal and Lumical integration, vacuum layout, cavern layout, post-collision line systems etc.

The CDR MDI concept:

CDR Detectors Concepts



SiD: 5 Tesla field; $L^* = 4.4 \text{ m}$

ILD: 4 Tesla field; $L^* = 3.5 \text{ m}$

MACHINE DETECTOR INTERFACE for L*= 3.5 m

1. Studies for longer L*:

Some justifications for the CDR choice (L*=3.5 m)

The choice of short L* was justified by:

- this option would provide the maximum (peak) luminosity
- this layout is the most challenging: if you have a plausible solution for short L*, the longer L* should be easier for the stabilisation, radiation, impact of detector solenoid B-field, etc.
- at the time the pre-alignment tolerance for longer L* was considered unrealistic (2 μ m for L*=8 m, 10 μ m for L*= 3.5m), but since then significant progress has been made in the BDS optics.

1. Studies for longer L*: PROS & CONS

Pros:

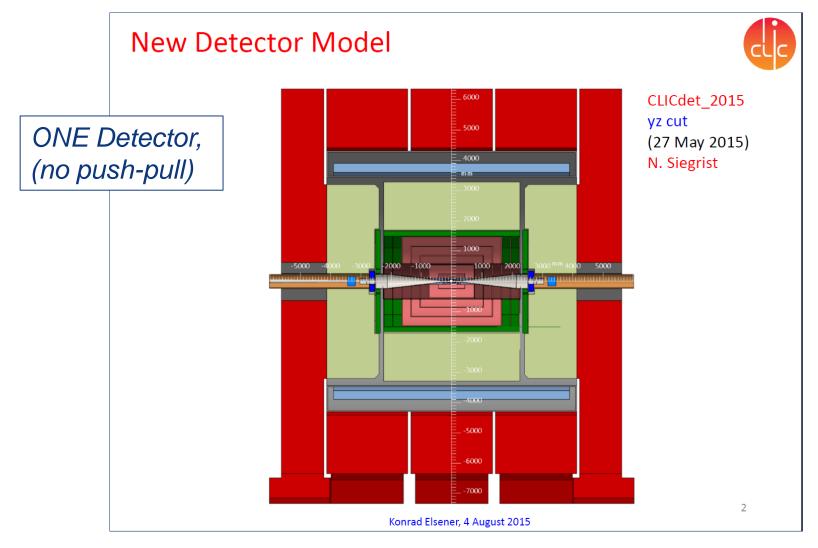
- <u>Maximize detecting volume</u> (forward acceptance)
- <u>Less complex integration</u>
 (QD0, stabilization system
 integration, alignment
 concept, vacuum systems,
 etc.)
- <u>No need of an antisolenoid</u> (at least for QD0 operation)

Cons:

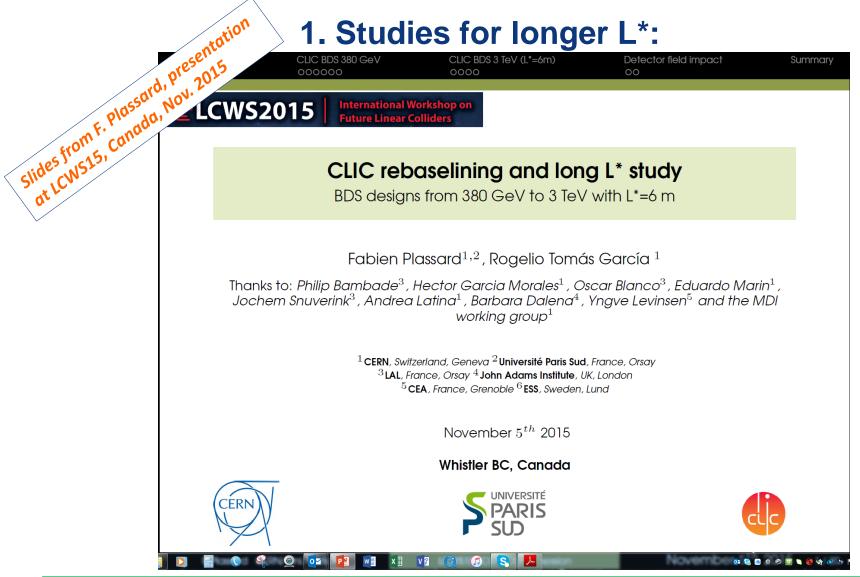
- Lower peak luminosity

(see F. Plassard presentation)

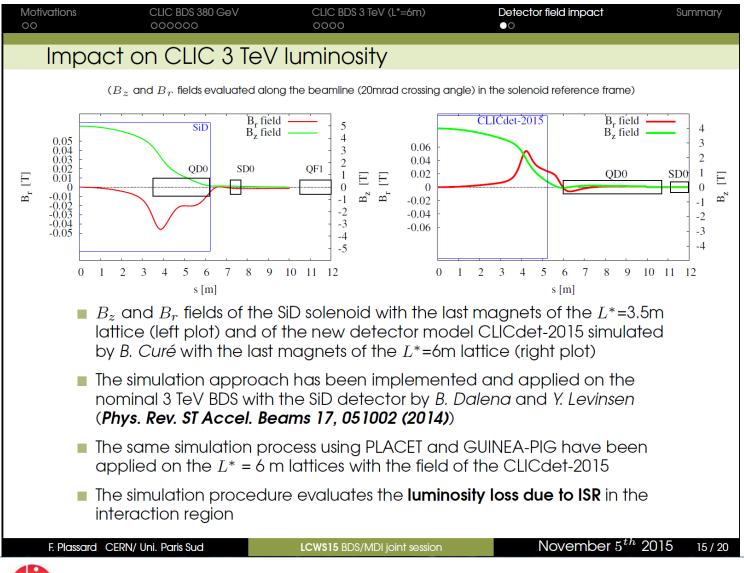
- Impact on Beam Delivery System (BDS)

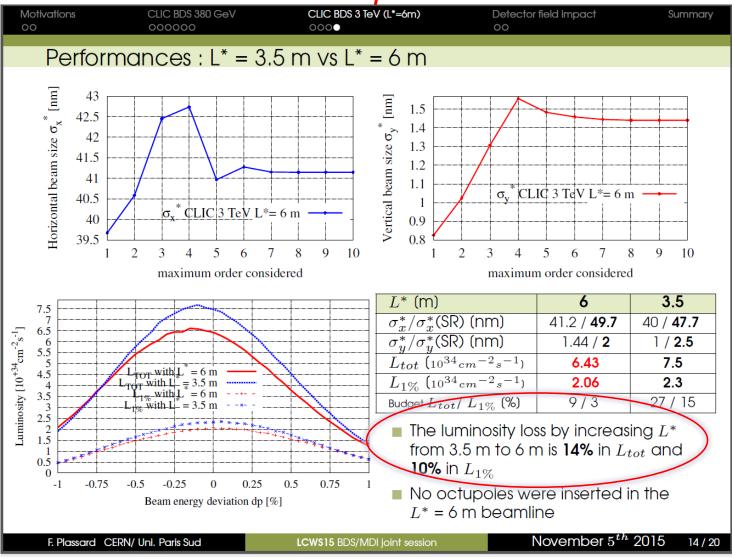

(see F. Plassard presentation)

- Alignment requirements are <u>tighter</u> (more precise evaluations are on-going)


1. Studies for longer L*:

Detector new conceptual design




Please refer to F. Plassard presentation: "Rebaselining and longer L* for CLIC and ATF2" AT THIS WORKSHOP, Accelerator Parallel Sessions, Tuesday 19 at 14h20

1. Studies for longer L*: BDS Implication

1. Studies for longer L*: BDS Implication

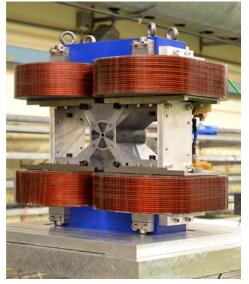
1. Studies for longer L*: BDS Implication

ations CLIC BDS 380 GeV 000000	study	COVERING a		ctor field impact	Summary
ummary	energy staging case (380 GeV)				
CLIC		380 GeV	380 GeV		3 TeV
L* (m)		4.3	6	3.5	6
σ_x^* (SR) (nm)		150	160	47.7	49.7
σ_y^* (SR) (nm)		2.7	3.5	2.5	2
L_{tot} (design) / L_{tot} (10 ³⁴ cm ⁻² s ⁻¹)		1.5 / 1.86	1.5 / 1.5	2 5.9 / 7.5	5.9 / 6.43
$L_{1\%}$ (design) / $L_{1\%}$ (10 $^{34}cm^{-2}s^{-1}$)		0.9 / 1.09	0.9 / 0.94	2 / 2.3	2 / 2.06
Chromaticity ξ_y (computed)		68464	95697	82637	93017
Budget $L_{tot}/L_{1\%}$ (%)		24 / 21	1.5 / 4.5	27 / 15	9/3
Impact of solenoid on $L_{tot}/L_{1\%}$ (%)		-	-	7.8 / 8.2	3.7 / 4.6
Tuning performances		-	-	-	-
 All lattices fulfill now the a For L*= 6m option for ea dynamic imperfections is The impact of the solence and should not require a 	ch stag s low pid on th	e, the lumino	osity budge	et for static a	
The tuning is still on progr FFS (Tradition or Local sch Plassard CERN/ Uni. Paris Sud	neme?		L* ?)		"Work in pro
				perjormane	

IMP!: "Work in progress"; performances could be probably even improved but FEEDBACKS and MOTIVATIONS from Detector Community are NEEDED!

1. Studies for longer L*: *Magnet system implication*

• The QD0 requirement for $E= 3\text{TeV} / L^* = 3.5 \text{ m}$ are:

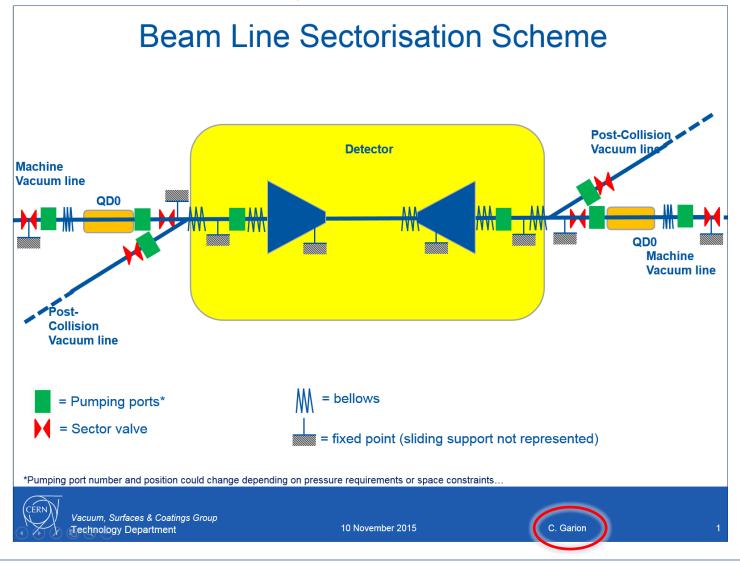

Gradient: 575 T/m; Aperture Ø: 8.25 mm, Length: 2.73 m, tunability: 20%

• The (*preliminary*) requirements for <u>E=3TeV / L*=6 m</u> are:

Gradient: 197 T/m; Aperture Ø: 10 mm, Length: 4.7 m (eventually split in 2-3 elements)

The QD0 parameters for L*=6 *m* are evidently <u>more relaxed</u>. Furthermore, the magnet would be positioned OUTSIDE the detector.

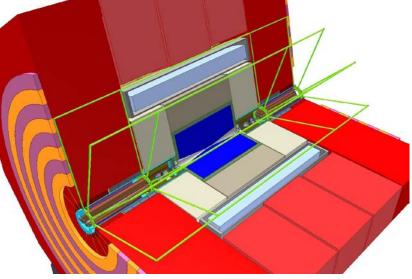
The hybrid design developed for the $L^*=3.5$ m case is a possible but maybe not necessary solution. To be reminded that the magnet still need to be nanometer stabilized and has to be compatible with the passage of the post-collision line (chamber at ~ 60 mm in transverse direction of QD0 axis)



Hybrid QD0 prototype developed with the L*=3.5 m main parameters

1. Studies for longer L*:

Vacuum system implication

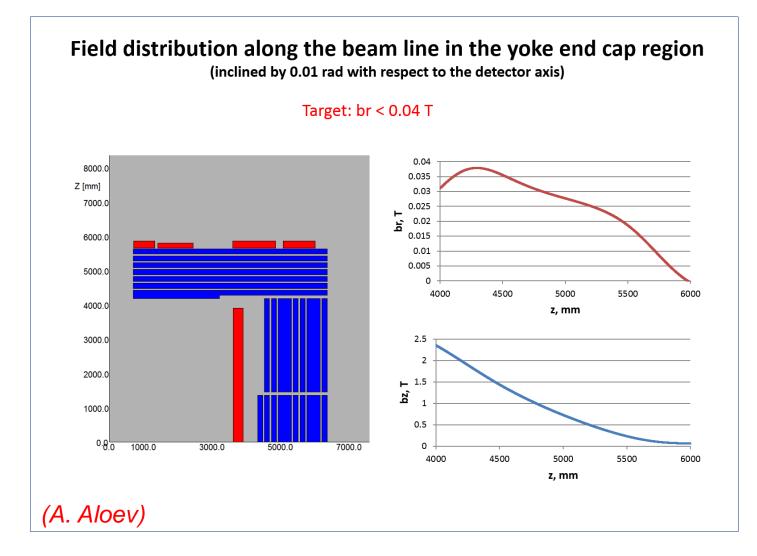

1. Studies for longer L*: *Alignment system implication*

• Tolerances will be tighter: for CDR requirements were evaluated at $10\mu m$ for L* = 3.5 m.

For L*=6 m will be ~6-8 μ m (?) \rightarrow study ongoing by beam dynamic team.

 The system would be <u>simpler</u> (no needs of the "ZERODUR" spokes system as for L*=3.5 m

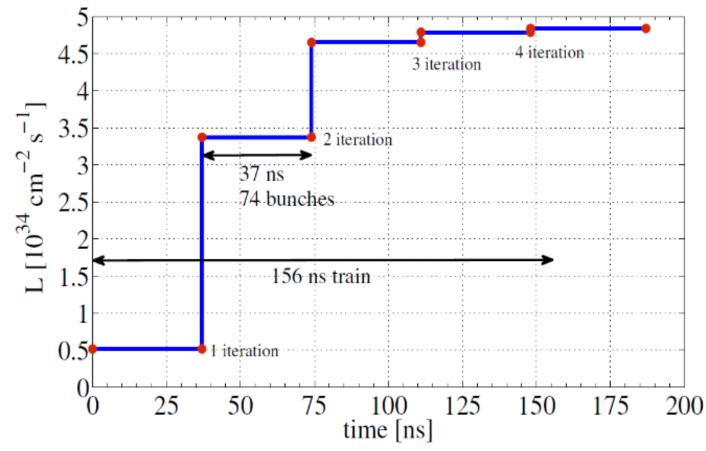
(ZERODUR® has a thermal expansion coefficient of $0\pm0.007\times10^{-6}/K$ in the range 0°to 50°C)



Needs of <u>"survey mini-galleries</u>" bypassing the cavern ?

1. Studies for longer L*:

Antisolenoid system implication



2. IP Feedback study

CLIC IP FB Performance (CDR)

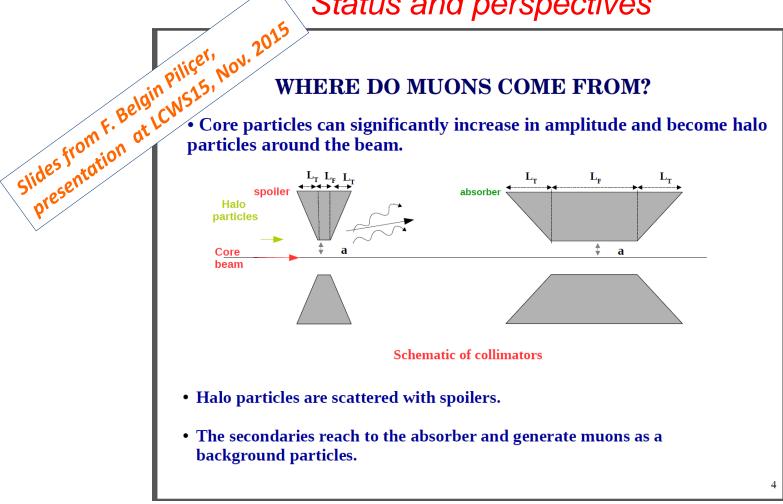
Single random seed of GM C, CDR implementation

(Ph. Burrows, Resta-Lopez)

2. IP Feedback study

IP FB with long L*

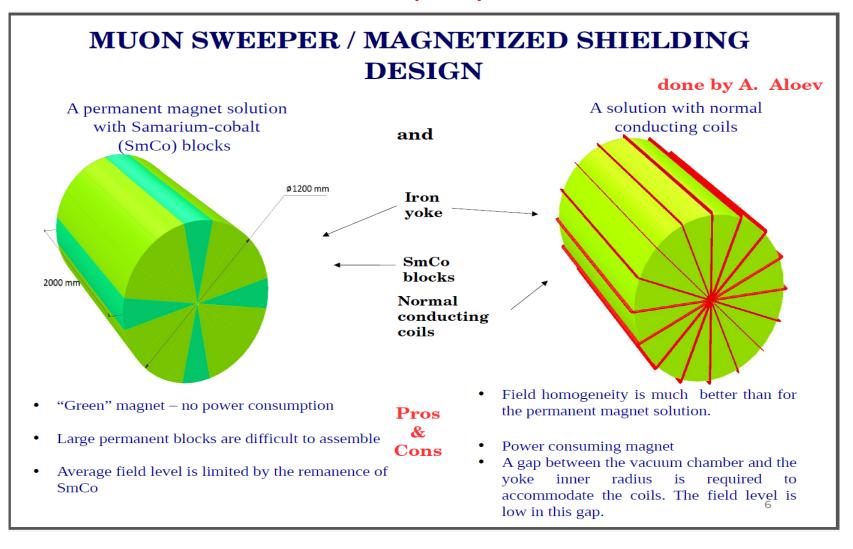
- Current CDR geometry: time of flight IP → BPM → kicker → IP ~ 24 ns
- Demonstrated FONT3 electronics latency = 13ns
- Estimated IPFB latency = 37ns
- In principle, change of L* need not affect IPFB position and latency, but needs to be engineered carefully, considering other beam line components



3. Muons scrapers studies:

Status and perspectives

WHERE DO MUONS COME FROM?


Core particles can significantly increase in amplitude and become halo particles around the beam.

Please refer to A. Aloev presentation: "Magnetized muon absorbers" AT THIS WORKSHOP, Accelerator Parallel Sessions, Tuesday 19 at 15h40

3. Muons scrapers studies:

Status and perspectives

3. Muons scrapers studies:

Status and perspectives

SUMMARY

 \rightarrow Permanent magnet solution has been compared with normal conducting coils.

 \rightarrow Field intensity has been simulated for different # of SmCo blocks.

 \rightarrow The muon sweeper parameters have been updated for BDS.

 \rightarrow 0.7 T (min) and 1.2 T (optimum) as permanent magnet option have been simulated with BDSIM.

 \rightarrow The simulation results showed roughly factor of ~10 reduction at 1.2 T for muons at the end of the BDS.

 \rightarrow The remaining muons comes dominantly from last dipole section.

12

4. Conclusion and Future Plans:

- <u>COMPLETION of BDS OPTIMIZATION and PERFORMANCES evaluation</u>: work on-going with the beam dynamic team. We need operative requirements for stabilization and prealignment tolerances.
- <u>MAGNET STUDY</u>: The required gradient for QD0 in L*=6 m permit to envisage different solutions, driving aspects link with the following points:
 - <u>QD0 STABILIZATION</u>: one of the most critical aspect of the new layout. QD0 will be longer (4.7 m) but can be split in 2-3 elements (each length ~ 1.5 m; → always try to minimize the QD0 mass; → correlation/matching of the 2-3 stabilizing systems)
 - REQUIREMENTS FOR QD0 PRE-ALIGNMENT: the requirements are tighter respect to L*=3.5 m, but QD0 is outside of the detector → a new approach must be study (survey mini-galleries?)
- FEEDBACK and INPUT from the Detector Community are needed in order to advance with the study and for eventual improvement of final performances

The MDI working group

A.Hervé, A.Aloev, A.Vorozhtsov, A.Gaddi, A.Jeremie, A.Latina, A.Sailer, B.Dalena,
B.Pilicer, B.Cure, L.Brunetti, C.Garion, C.Collette, C.Perry, D.Schulte, D.Tommasini,
D.Mergelkuhl, E.Bravin, F.Plassard, F.Duarte-Ramos, F.Butin, F.Zimmermann,
G.Christian, G.Bobbink, H.Mainaud-Durand, H.Burkhardt, H.Gerwig, J.Resta-Lopez,
J.Axensalva, J.Vollaire, J.Snuverink, J.Osborne, K.Elsener, K.Artoos, L.Gatignon
(chair), L.Linssen, M.Battaglia, M.Gastal, M.Guinchard, M.Modena, P.Burrows,
R.Tomas, R. Bodenstein, S.Mallows, S. Stapnes, T.Lefevre, Th.Otto, H.van der
Graaf, V.Ziemann, Y.Levinsen, Y.Kim

Thanks for your attention

