

Stability and Reproducibility in CTF3

Presenter: Lukáš Malina

Klystrons as thermometers

Summer

Autumn

19-23 Oct 26 - 30 Oct Wed:12 Thu:00 Thu:12 Fri:00 Fri:12 Sat:00

Monika Nisiewicz

Feedbacks

RF Feedbacks

- Pulse compressor temperature feedbacks
- Klystron power flattening feedbacks
- Phase-loops

Beam-based feedbacks

- Gun Current feedback NEW
- TWTPhase feedback
- Injector feedback
- Loading feedbacks Improved
- Energy flattening feedback

Klystron 2 trip

- Came back with different characteristics
 - power (0.7 MW lower)
 - Phase (off 12° @ 3 GHz)
- Machine sort of stable anyway
- Klystron recovered after cca 30 minutes
 - Should we extend the automatic restart time?

Klystron 2 trip

Current in TBL

BPRs in linac

2014 factor 8 stability

Good day

Piotr's presentation last year

2015 factor 8 stability

Tobias Persson

Last day of the run - phase

Last day of the run - current

Last day of the run - energy

Last day of the run - stability

- Beam to CRM
- Phase ~ 0.25°
 - Limited by hardware
- ♦ Current ~ 5-9-10⁻⁴
 - Or less in the linac
 - Limited by hardware
 - Noise of BPM0402S $\sim 8 \cdot 10^{-4}$
- ♦ Energy ~ 2-5-10⁻³
 - Both hardware and software improvements ongoing

- CTF3 Stability Goals
- Beam phase ~ 0.2 °
- Drive Beam Current ~ 7.10⁻⁴
- Energy ~ 10⁻³

Reproducibility

- New reference watchdog application implemented
- Swap between 1.5 GHz and 3 GHz is just a matter of SHBs and PhaseSwitchers
- Same optics for beam to TBL and TBM
- Unfortunately not constant number of working TWTs
- Starting the beam in the morning is (ussually) easier as the feedbacks are keeping the reference
 - Getting back to the correct working point is matter of less than a minute

Reference Watchdog Application

- The core of the application is based on the Monitor from Tobias
- Shows the difference between current situation and the loaded reference
 - Based on predefined deviation measures
 - References saved by the Monitor
 - autosave every ~5 minutes (readout takes ~3 minutes)
- Possible to compare two different references
- GUI very similar to the Monitor
 - Useful for quick investigation
 - Acquisition not working, detailed view of groups of devices ...
 - Just the view is split (example on next slide)
 - "Beam related" signals : b_
 - "Machine related" signals: m_

Reference Watchdog Application

CLIC Workshop 2016

Reference Watchdog Application

- Single value control values (typically current in magnets)
- Signals with structure along the pulse

Groups of signals (excluding the parts of the machine without beam)

🛓 Machine		🛓 Beam	Spectrum and products	_ X	🛓 Groups	— — X
Machine: device name	ChiSquare	Reference: 2015_12_14/_2015_12_14_19:13:23.ref		Groups: device name	ChiSquare	
CK.MKS03	10008.00 🔶				b_RF_Compress	0.00
CK.MKS13	10008.00	Beam: device n	ame	ChiSquare	b_RF_Struct_Exit	0.00
CK.MKS07	10008.00	CK.STPKI	02A	-1.00	b_BPRs	0.00
CK.MKS15	10000.00	CK.STPSI	03A	-1.00		
CK.MKS02	9983.61	CK.STPSI	05A	-1.00		
CK.MKS05	9983.61	CK.STPSI	06A	-1.00		
CK.MKS06	9983.61	CK.STPSI	07A	-1.00		
CK.MKS11	9960.04	CK.STPSI	11A	-1.00		
CK.MKS12	9934.91	CK.STPSI	12A	-1.00		
CT.QFD0130	649.65	CK.STPSI	13A	-1.00		
CT.QFD0150	204.46	CK.STPSI	15A	-1.00		
CT.QFD0310	0.03 =	CK.STPSIL	.02A	-1.00		
CT.QDD0110	0.00	CK.STPEI01	134A	-1.00		
CL.BHA0430-S	0.00	CK.STPEI02	204A	-1.00		
CL.BHB1040	0.00	CK.STPEI02	214A	-1.00		
CL.DHA0120	0.00	CK.STPPBI	EI2A	-1.00		
CL.DHA0150	0.00	CK.STPB	EIA	-1.00		
CL.DHA0230	0.00	CK.STPEI03	305A	-1.00		
CL.DHB0270	0.00	CK.STPEI05	530A	-1.00		
CL.DHB0315	0.00	CK.STPEI06	530A	-1.00		
CL.DHB0340	0.00	CK.STPEI07	730A	-1.00		
CL.DHC0410	0.00	CK.STPEI1	130A	-1.00		

Hardware improvements (checks)

- Attenuation from power signals at exit of structures 6 and 12 was removed
- Plan to use finer step phase shifter in klystron 2 and 3
- ◆ Use the whole dynamic range of CL.BPR0290S beam phase measurement
- CL.STBPM0402 in the linac is one of the noisiest BPMs
 - We could possibly swap the electronics with some better one
 - There might be 12-bit electronics
- Gun current control value (limited to 10 A !!!)
 - Used to be ~6.5 A
 - After the cathode change gradually increased to maintain the same beam current
 - Now is > 9 A @ 3 GHz and > 8 A @ 1.5 GHz
 - Will it survive or we need to do something?

Conclusions

- The setup of the machine is improving not a "push the button", but we are getting closer
- Current stability better than previous year, but the goal hasn't been reached yet
- Hardware improvements are ongoing during shut down

Thank you for your attention