

CLIC Workshop 2016

CERN 18-22 January 2016

Single-photon processes at e+e- colliders

Jan Kalinowski University of Warsaw

Great expectations for New Physics at the LHC, but no direct evidence (yet?)

Outstanding questions remain + various BSM hints (DM, neutrinos,...)

A plausible scenario:

- all colored particles very heavy
- a few light EW particles, nearly mass-degenerate
- even charged states difficult to detect due to soft decay products

A future e+e- collider with:

- clean environment
- fixed CM frame
- polarized beams

can cope with such a difficult scenario via

 $e^+e^- \to \gamma \bar{X} X \to \gamma + E^{miss}$

Linssen ea 2012 Behnke ea 2013, Moortgat-Pick es 2015 Fujii ea 2015 Levy (CLICdp) 2015

Motivation

Processes $e^+e^- \rightarrow \gamma + E^{miss}$ have been exploited in the past:

- counting neutrino families
- anomalous gauge couplings
- search for invisible states like lightest neutralino

Question: can we reveal the nature of events from the observed photon?

Here we exploit $e^+e^- \rightarrow \gamma + E^{miss}$ to full extent possible

- not only to detect X-pair production,
- but also determine the spin
- and the coupling structure

see also Bartels, Berggren, List 1206.6639

- Three benchmark scenarios adopted from the MSSM
 - \rightarrow higgsino, wino and slepton
- ISR and FSR
- Photon energy distributions
- Discovery limits for invisible states
- Spin determination
- Beam polarisation \Leftrightarrow scenario discrimination

based on: S.Y. Choi, T. Han, J.K., K. Rolbiecki and X. Wang PRD 92(2015)095006 [arXiv:1503.08538] + an update for ILC-2 and CLIC

Higgsino Scenario – H_{1/2}

 \diamond realised when $\mu \ll$ other SUSY parameters

a pair of spin 1/2 higgsino doublets

$$\tilde{H}_d = [\tilde{H}_{dL}^0, \tilde{H}_{dL}^-] \quad and \quad \tilde{H}_u = [\tilde{H}_{uL}^+, \tilde{H}_{uL}^0]$$

→ 1 Dirac chargino + 1 Dirac neutralino $\mu\left(\overline{\tilde{H}_{uR}^{-}}\tilde{H}_{dL}^{-} + \overline{\tilde{H}_{dR}^{+}}\tilde{H}_{uL}^{+}\right) - \mu\left(\overline{\tilde{H}_{uR}^{0}}\tilde{H}_{dL}^{0} + \overline{\tilde{H}_{dR}^{0}}\tilde{H}_{uL}^{0}\right) \quad \Rightarrow \quad \mu\overline{\chi_{H}^{-}}\chi_{H}^{-} + \mu\overline{\chi_{H}^{0}}\chi_{H}^{0}$

with pure vector-type interactions with EW gauge bosons

$$\mathcal{L}_{V\chi\chi}^{H} = e \overline{\chi_{H}^{-}} \gamma^{\mu} \chi_{H}^{-} A_{\mu} + e \frac{(1/2 - s_{W}^{2})}{c_{W} s_{W}} \overline{\chi_{H}^{-}} \gamma^{\mu} \chi_{H}^{-} Z_{\mu}$$
$$-\frac{1}{2} \frac{e}{c_{W} s_{W}} \overline{\chi_{H}^{0}} \gamma^{\mu} \chi_{H}^{0} Z_{\mu} - \frac{e}{\sqrt{2} s_{W}} (\overline{\chi_{H}^{0}} \gamma^{\mu} \chi_{H}^{-} W_{\mu}^{+} + \text{h.c.})$$

Wino Scenario - W_{1/2}

 \diamondsuit realised when $M_2 \ll$ other SUSY parameters

a triplet of spin ½ wino states $\tilde{W} = [\tilde{W}_L^+, \tilde{W}_L^0, \tilde{W}_L^-]$

→ 1 Dirac chargino + 1 Majorana neutralino

$$M_2\left(\overline{\tilde{W}_R^+}\tilde{W}_L^+ + \overline{\tilde{W}_R^0}\tilde{W}_L^0 + \overline{\tilde{W}_R^-}\tilde{W}_L^-\right) \quad \Rightarrow \quad M_2\overline{\chi_W^-}\chi_W^- + \frac{1}{2}M_2\overline{\chi_W^0}\chi_W^0$$

which interact with EW gauge bosons as

$$\mathcal{L}_{V\chi\chi}^{W} = e \overline{\chi_{W}^{-}} \gamma^{\mu} \chi_{W}^{-} A_{\mu} + e \frac{(1 - s_{W}^{2})}{c_{W} s_{W}} \overline{\chi_{W}^{-}} \gamma^{\mu} \chi_{W}^{-} Z_{\mu} - \frac{e}{s_{W}} \left(\overline{\chi_{W}^{-}} \gamma^{\mu} \chi_{W}^{0} W_{\mu}^{-} + \text{h.c.} \right)$$

 χ_W^0 does not couple to Z

 \diamond realised when $m_{\tilde{l}_L} \ll$ other SUSY parameters

a doublet of spin 0 sleptons

$$\tilde{L} = [\tilde{\nu}_{\ell}, \tilde{\ell}_L^-]$$

momentum-dependent interaction with EW gauge bosons

$$\begin{aligned} \mathcal{L}_{V\tilde{\ell}_{L}\tilde{\ell}_{L}}^{L} &= e\,\tilde{\ell}_{L}^{+}\overleftrightarrow{\partial_{\mu}}\tilde{\ell}_{L}^{-}\,A^{\mu} + e\,\frac{(1/2 - s_{W}^{2})}{c_{W}s_{W}}\,\tilde{\ell}_{L}^{+}\overleftrightarrow{\partial_{\mu}}\tilde{\ell}_{L}^{-}\,Z^{\mu} - \frac{e}{2c_{W}s_{W}}\,\tilde{\nu}_{\ell}^{*}\overleftrightarrow{\partial_{\mu}}\tilde{\nu}_{\ell}\,Z^{\mu} \\ &- \frac{e}{\sqrt{2}s_{W}}\left(\tilde{\nu}_{\ell}^{*}\overleftrightarrow{\partial_{\mu}}\tilde{\ell}_{L}^{-}\,W^{+\mu} + \text{h.c.}\right) \end{aligned}$$

additional quartic contact interaction

$$\mathcal{L}_{\gamma Z \tilde{\ell}_{L}^{-} \tilde{\ell}_{L}^{-}}^{L} = e^{2} \tilde{\ell}_{L}^{+} \tilde{\ell}_{L}^{-} A_{\mu} A^{\mu} + 2e^{2} \frac{(1/2 - s_{W}^{2})}{c_{W} s_{W}} \tilde{\ell}_{L}^{+} \tilde{\ell}_{L}^{-} A_{\mu} Z^{\mu}$$

changes threshold behavior

Radiatively-induced mass difference

although degenerate at tree level, radiative corrections split by a calculable amount

$$\Delta m_H = m_{\chi_H^{\pm}} - m_{\chi_W^0} = \frac{\alpha}{4\pi} \mu \left[f(m_Z/\mu) - f(0) \right]$$

$$\Delta m_W = m_{\chi_W^{\pm}} - m_{\chi_W^0} = \frac{\alpha}{4\pi s_W^2} M_2 \left[f(m_W/M_2) - c_W^2 f(m_Z/M_2) - s_W^2 f(0) \right]$$

$$f(a) = 2 \int_0^1 dx \left(1 + x \right) \ln \left[x^2 + (1 - x)a^2 \right]$$

asymptotic values for $\mu, M_2 \gg m_Z$

 $\Delta m_H \simeq 355 \ MeV, \ \Delta m_W \simeq 165 \ MeV$

for sleptons the mass splitting

$$\sim \frac{\alpha}{4\pi} M_Z$$

D-term splitting =0 for $tan\beta=1$

Single-photon processes at e+e- colliders

We want to exploit fully the photon in $e^+e^-
ightarrow \gamma \bar{X} X$

the ISR and FSR are separately gauge invariant and do not interfere

in most analyses so far the FSR has been ignored

Initial state radiation

The ISR effect can be expressed in a factorised form

$$\frac{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm ISR}}{dx_\gamma \, d\cos\theta_\gamma} = \mathcal{R}(s; x_\gamma, \cos\theta_\gamma) \times \sigma^{X\bar{X}}(q^2) \qquad \qquad x_\gamma = 2E_\gamma/\sqrt{s} \\ q^2 = (1 - x_\gamma)s$$

 $\beta_q = \sqrt{1 - 4m_X^2/q^2}$

with the universal ISR radiator \mathcal{R}

and the $X\bar{X}$ production cross section at the reduced CM energy

$$\sigma^{X\bar{X}}(q^2) = \frac{2\pi\alpha^2}{3q^2}\beta_q \mathcal{P}(X; P_-, P_+; q^2) \begin{cases} \beta_q^2 & \text{for spin-0} \\ 2(3 - \beta_q^2) & \text{for spin-1/2} \end{cases}$$

Initial state radiation

The ISR effect can be expressed in a factorised form

$$\frac{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm ISR}}{dx_\gamma \, d\cos\theta_\gamma} = \mathcal{R}(s; x_\gamma, \cos\theta_\gamma) \times \sigma^{X\bar{X}}(q^2) \qquad \qquad x_\gamma = 2E_\gamma/\sqrt{s} \\ q^2 = (1 - x_\gamma)s$$

 $\beta_q = \sqrt{1 - 4m_X^2/q^2}$

with the universal ISR radiator \mathcal{R}

and the $X\bar{X}$ production cross section at the reduced CM energy

$$\sigma^{X\bar{X}}(q^2) = \frac{2\pi\alpha^2}{3q^2}\beta_q \mathcal{P}(X; P_-, P_+; q^2) \begin{cases} \beta_q^2 & \text{for spin-0} \\ 2(3 - \beta_q^2) & \text{for spin-1/2} \end{cases}$$
 P-wave

At threshold, when $x_{\gamma} \to x_{\gamma}^{max} = 1 - 4m_X^2/s$, the X speed $\beta_q \to 0$

Final state radiation

The FSR can be decomposed as

$$\frac{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm FSR}}{dx_\gamma \, d\cos\theta_\gamma} = \mathcal{F}(s; x_\gamma, \cos\theta_\gamma) \times \sigma^{X\bar{X}}(s)$$

but unlike ISR, the FSR radiator

$$\mathcal{F}(s; x_{\gamma}, \cos \theta_{\gamma}) = \frac{3}{8} \left[(1 + \cos^2 \theta_{\gamma}) \mathcal{F}_1^X(s; x_{\gamma}) + (1 - 3\cos^2 \theta_{\gamma}) \mathcal{F}_2^X(s; x_{\gamma}) \right]$$

 $L(\beta_q) = \frac{1}{\beta_q} \ln \frac{1 + \beta_q}{1 - \beta_q}$

is not universal: depends on the spin of X

In the soft photon limit, and after integrating over $\cos \theta_{\gamma}$

it approaches a well known universal form $\mathcal{F}(s; x_{\gamma}) \to \frac{\alpha}{\pi} \frac{1}{x_{\gamma}} \left[(1 + \beta_s^2) L(\beta_s) - 2 \right] \quad \text{as} \quad x_{\gamma} \to 0$

Final state radiation

On the other hand, at threshold $\beta_q \rightarrow 0$

> the radiator function \mathcal{F}_2^X behaves

 $\mathcal{F}_2^X \sim \beta_q^3$ i.e. P-wave for both spin 0 and 1/2

> but the other radiator function \mathcal{F}_1^X behaves differently

$$\mathcal{F}_1^X(s; x_\gamma) \to \frac{\alpha}{\pi} \beta_q \begin{cases} 2/\beta_s & \text{for spin-0} \\ 2\beta_s/(3-\beta_s^2) & \text{for spin-1/2} \end{cases}$$

i.e. S-wave for both spin 0 and 1/2

this is due to a quartic coupling appearing in

Question: does it jeopardize spin determination of charged states?

In general FSR much smaller than ISR because photon radiated by heavy X

$$\mathcal{R}_{\rm FI}(x_{\gamma}) = \frac{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm FSR}/dx_{\gamma}}{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm ISR}/dx_{\gamma}}$$

Effects of ISR and FSR for charged pairs

In general FSR much smaller than ISR because photon radiated by heavy X

$$\mathcal{R}_{\rm FI}(x_{\gamma}) = \frac{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm FSR}/dx_{\gamma}}{d\sigma(e^+e^- \to \gamma X\bar{X})_{\rm ISR}/dx_{\gamma}}.$$

In contrast to spin 1/2 chargino case,

 $\mathcal{R}_{\mathrm{FI}}(x_{\gamma}) \,\,$ for spin 0 blows up near threshold

Signal vs. SM background

To suppress the background:

- cut on the photon recoil mass
- > use polarized beams

Statistical significance of signal: ILC $\mathcal{L} = 0.5 \text{ ab}^{-1}$

 $\sigma(\gamma\nu\bar{\nu})$

 N_S

6230 fb

8840 ev.

400 fb

2250 ev.

e.g. for m_X=100 GeV

number of signal events for 5σ significance:

Statistical significance of signal: ILC-2 $\mathcal{L} = 1.6 \text{ ab}^{-1}$

Statistical significance of signal: CLIC $\mathcal{L} = 1.5 \text{ ab}^{-1}$

solid: $(P_-, P_+) = (-0.8, 0.0)$ dashes: $(P_-, P_+) = (+0.8, 0.0)$

both beams polarised

solid $(P_-, P_+) = (-0.8, +0.3)$ dashes $(P_-, P_+) = (+0.8, -0.3)$ threshold behavior:

for neutrals: S-wave for spin ½ P-wave for spin 0

for charged the FSR: S-wave for both spin 0 and $\frac{1}{2}$

does it geopardise the spin determination?

Spin determination

no, because near theshold FSR is numerically very small

Spin determination: ILC-2

 $\mathcal{L} = 1.6 \text{ ab}^{-1}$

statistical errors based on number of background events difference between spin 0 and spin ½ clearly seen for L-scenario, dedicated study of soft decay products greatly helps Berggren ea 2013

Spin determination: CLIC

for $H_{1/2}$ and L_0 scenarios error bars are even larger, in particular for L_0

Beam polarization \Leftrightarrow discriminating scenarios

$$\mathcal{R}_{LR}(X; x_{\gamma}) = \frac{d\sigma(e^+ e_R^- \to \gamma X \bar{X})/dx_{\gamma}}{d\sigma(e^+ e_L^- \to \gamma X \bar{X})/dx_{\gamma}}$$

depends strongly on the scenario

Beam polarization \Leftrightarrow discriminating scenarios

$$\mathcal{R}_{LR}(X; x_{\gamma}) = \frac{d\sigma(e^+e_R^- \to \gamma X\bar{X})/dx_{\gamma}}{d\sigma(e^+e_L^- \to \gamma X\bar{X})/dx_{\gamma}}$$

- > Three scenarios $H_{1/2}$, $W_{1/2}$, L_0 with pairs of EW particles nearly mass-degenerate
- ➢ Both ISR and FSR analysed
- Inspite of FSR contamination, photon energy dependence near threshold allows to determin the spin
- > Polarized beams are essential to discriminate among scenarios considered
- Our results demonstrate clearly the physics potential of the e+e- collider in detecting and characterizing the invisible particles

backup slide

polarization dependent factor

$$\mathcal{P}(X; P_{-}, P_{+}; q^{2}) = \frac{(1+P_{-})(1-P_{+})}{4} \left| c_{X}^{\gamma} + c_{R}c_{X}^{Z} \frac{q^{2}}{q^{2} - m_{Z}^{2}} \right|^{2} + \frac{(1-P_{-})(1+P_{+})}{4} \left| c_{X}^{\gamma} + c_{L}c_{X}^{Z} \frac{q^{2}}{q^{2} - m_{Z}^{2}} \right|^{2}$$

for spin $\frac{1}{2}$

$$\mathcal{F}_{1}^{X}(s;x_{\gamma}) = \frac{\alpha}{\pi} \frac{1}{x_{\gamma}} \frac{\beta_{q}}{\beta_{s}} \left[(1+\beta_{s}^{2}-2x_{\gamma})L(\beta_{q}) - 2(1-x_{\gamma}) + \frac{2x_{\gamma}^{2}}{3-\beta_{s}^{2}} [L(\beta_{q})-1] \right]$$
$$\mathcal{F}_{2}^{X}(s;x_{\gamma}) = \frac{\alpha}{\pi} \frac{1}{x_{\gamma}} \frac{\beta_{q}}{\beta_{s}} \frac{2}{3-\beta_{s}^{2}} \left[2-2x_{\gamma} - (1-\beta_{s}^{2})L(\beta_{q}) \right]$$

$$\mathcal{F}_{1}^{X}(s;x_{\gamma}) = \frac{\alpha}{\pi} \frac{1}{x_{\gamma}} \frac{\beta_{q}}{\beta_{s}} \left[(1+\beta_{s}^{2}-2x_{\gamma})L(\beta_{q}) - 2(1-x_{\gamma}) + \frac{2x_{\gamma}^{2}}{\beta_{s}^{2}} \right] \\ \mathcal{F}_{2}^{X}(s;x_{\gamma}) = \frac{\alpha}{\pi} \frac{1}{x_{\gamma}} \frac{\beta_{q}}{\beta_{s}} \frac{1}{\beta_{s}^{2}} \left[(3-\beta_{s}^{2}-2x_{\gamma})L(\beta_{q}) - 6(1-x_{\gamma}) \right]$$

for spin 0