Top Physics at CLIC

CLIC Workshop 2016

Ignacio García IFIC-Valencia

On behalf of the CLICdp collaboration

January 2016 CLICdp: Physics and Analysis

OUTLINE

1. Motivation

Properties of the top quark and sensitivity to BSM physics

2. Current Status: Top quark today (LHC measurements)

Top mass Top EW couplings Yukawa coupling

3. Top quark at Future Linear Colliders

Top mass from a threshold scan Top EW couplings precision Yukawa coupling (ttH) FCNC top decays (t→cH)

4. Summary

Motivation

A physics program of the top quark is mainly divided in two blocks

Properties of the top quark

Mass: important parameter of the SM (vacuum stability)

Width: top decays before hadronisation

Yukawa coupling: strongly coupled to Higgs field

 $m_t = 173.1 \pm 0.7 \,\,\mathrm{GeV}$

 $m_t = 171.1 \,\,{\rm GeV}$

Sensitivity to BSM physics

Electroweak couplings: looking for deviations from the SM values Is the top quark a composite object? Is it just an ordinary quark? *M.Peskin LCWS15 - Canada*

CLIC (and future *e*+*e*- colliders generally) **gives** the opportunity to study the top quark with unprecedented precision

Top quark studies should have an important weight in the LC programs

Current status: Top Mass

Hadron colliders (LHC and Tevatron) achieved a precision in the

measurement of the top mass of ~ 0.76 GeV in March 2014 arXiv:1403.4427

Combination of consistent set of measurements from 4 experiments (ATLAS, CMS, CDF and D0)

New results from CMS even more precise ~ 0.5 GeV September 2015

ATLAS+CMS Preliminary LHCtop WG	m _{top} summary,√s = 7-8 TeV	Sep 2015		
world Comb. Mar 2014, [7] stat total uncertainty	total stat			
m _{top} = 173.34 ± 0.76 (0.36 ± 0.67) GeV	m _{top} ±total (stat±syst)	vis Ref.		
ATLAS, I+jets (*)	172.31±1.55 (0.75±1.35)	7 TeV [1]		
ATLAS, dilepton (*)	173.09±1.63 (0.64±1.50)	7 TeV [2]		
CMS, I+jets	173.49±1.06 (0.43±0.97)	7 TeV [3]		
CMS, dilepton	172.50±1.52 (0.43±1.46)	7 TeV [4]		
CMS, all jets	173.49±1.41 (0.69±1.23)	7 TeV [5]		
LHC comb. (Sep 2013)	173.29±0.95 (0.35±0.88)	7 TeV [6]		
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [7]		
ATLAS, I+jets	172.33±1.27 (0.75±1.02)	7 TeV [8]		
ATLAS, dilepton	173.79±1.41 (0.54±1.30)	7 TeV [8]		
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [9]		
ATLAS, single top	172.2±2.1 (0.7±2.0)	8 TeV [10]		
ATLAS comb. (Mar 2015)	172.99±0.91 (0.48±0.78)	7 TeV [8]		
CMS, I+jets	172.35±0.51 (0.16±0.48)	8 TeV [11]		
CMS, dilepton	172.82±1.23 (0.19±1.22)	8 TeV [11]		
CMS, all jets	172.32±0.64 (0.25±0.59)	8 TeV [11]		
CMS comb. (Sep 2015)	172.44±0.48 (0.13±0.47)	7+8 TeV [11]		
	[1] ATLAS-CONF-2013-046 [7] arXiv	:1403.4427		
	[2] ATLAS-CONF-2013-077 [8] Eur.F	hys.J.C (2015) 75:330		
(*) Supprended by results	[3] JHEP 12 (2012) 105 [9] Eur.F	Phys.J.C75 (2015) 158		
shown below the line	[4] Eur.Phys.J.C72 (2012) 2202 [10] ATL [5] Eur.Phys.J.C72 (2014) 2258 [141=-75]	AS-CONF-2014-055		
165 170 17	5 180	185		
m _{top} [GeV]				

LHC already **exceeding prospects**, and the projection goes even beyond:

CMS: 200 MeV after 3000 fb⁻¹ (conventional method, *CMS-FTR-13-017-PAS*) based on "assumptions [that] are optimistic but not unrealistic"

Current status: Yukawa Coupling

TeV:

- Best fit signal strength ($\mu = \sigma/\sigma_{SM}$) ●
 - μ_{ttH} = 1.9^{+0.8}_{-0.7} ATLAS

 - $\mu_{ttH} = 2.9^{+1.0}_{-0.9} CMS$ $\mu_{ttH} = 2.3^{+0.7}_{-0.6} Combined$
 - significance 4.4 obs (2.0 o exp)
- Combined upper limits on σ/σ_{SM}
 - 3.2 obs (1.4 exp) ATLAS
 - 4.5 obs (1.7 exp) CMS

Top quark at Future Linear Colliders

CLIC Workshop 2016 CLICdp:Physicis and Analysis

Top pair threshold: Motivation

A scan of the ttbar threshold in e⁺e⁻ collisions is the best method for a precise measurement of the top quark mass and other top properties

Minor differences due to beam energy spectra of ILC, CLIC and FCC-ee

ILC and CLIC studies show that this **threshold shape** will be measured with **impressive accuracy**

The *tt* **cross-section** around the **threshold** is affected by several properties of the top quark and by QCD

• Top mass (m_t) , width (Γ_t) , Yukawa coupling (y_t)

Top pair threshold: Theory status

NNNLO QCD description of tt production at threshold: A decade of work to get the 3rd order! Beneke, Kiyo, Marguard, Penin, Piclum, Steinhauser, 1506.06864 [hep-ph]

10

Top pair threshold: Theory status

Conversion of pole / 1S / PS mass to $\overline{\text{MS}}$ mass at NNNNLO QCD

CLICdp:Physicis and Analysis

CLIC Workshop 2016

Marcel Vos (marcel vos@ific uv es)

I.Garcia (Ignacio.Garcia@ific.uv.es)

Top pair threshold: MC status

Now available: **NLO simulation of the ttbar threshold** in **WHIZARD** since version 2.2.3

More exclusive observables accesible

beyond total cross section: Asymmetries, momentum distribution

Incorporation of ISR and luminosity spectrum

Successful sanity check with theory calculations

Good progress towards matched calculation, Forward-backward asymmetry uncertainty bands to follow soon (norm. => good shape stability)

CLIC Workshop 2016 CLICdp:Physicis and Analysis

Top pair threshold: Top mass measurement

It translates into:

32 MeV fit uncertainty (including 19 MeV stat)

Threshold scan: 10 x 10 fb⁻¹, points spaced by 1 GeV from 340 to 349 GeV

Based on CLIC/ILC top threshold study EPJ C73, 2540 (2013)

- CLIC_ILD detector model
- Efficiency and backgrounds from full simulations
- ILC TDR luminosity spectrum

 Substantial variations section variations induce parameters basis projected stat. alone

[••]

Top mass measurements: Alternative techniques

LC scenarios start above threshold (ILC@500GeV, CLIC@380GeV), hence the first measurement top quark mass will be made there

Extraction of the top quark mass from the differential tty and ttg cross-section versus s'

Precision seems competitive for $\sqrt{s} \sim 400$ GeV Boronat, Fuster, Gomis, in preparation (cf. m(b) at m(Z) at LEP, EPJC73 (2013) 2438, ATLAS-CONF-2014-053)

Top quark couplings

In e+e- colliders the **ttbar production** is via γ/Z

A way to describe the ttZ and tt γ vertices: arXiv:hep-ph/0601112

$$\Gamma^{ttX}_{\mu}(k^2, q, \overline{q}) = -ie \left\{ \gamma_{\mu} \left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2) \right) + \frac{\sigma_{\mu\nu}}{2m_t} (q + \overline{q})^{\mu} \left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2) \right) \right\}$$

$$\begin{array}{c} \text{Vector} \qquad \text{Axial} \qquad \qquad \text{Tensorial} \qquad \text{CPV} \end{array}$$

New physics will modify the electro-weak ttX vertex described in the SM

 $\delta g_L^Z/g_L^Z$ 20%Statistical error: **ILC** Precision Precision expected for top quark √s ~ 500 GeV Arxiv:1505.06020 10%EPJC (2015) 75:512 $L = 500 \text{ fb}^{-1}$ couplings will allow to distinguish \bigcirc between models \mathbf{SM} RS with Z-Z' Mixing $\delta g_R^Z/g_R^Z$ 1 20% 10% -330% -20% -10% • 4D Composite Higgs Models [?] -10% \leftarrow Composite Higgs with SO(5)/SO(4) Little Higgs **5D** Emergent -20% \blacklozenge RS with Custodial SU(2) Composite Top

 $_{i,V/A}^{X}$

 $\widetilde{Z,\gamma}$

Top quark couplings: Sensitivity vs √s

Detailed study at ILC@500GeV Eur. Phys. J. C (2015) 75:512 DOI 10.1140/epjc/s10052-015-3746-5

Simple evaluation of statistical uncertainty at different scenarios (CLIC@380GeV, ILC@1TeV, CLIC@1.4TeV..)

"Sweet spot" around 400-600 GeV

Top quark couplings: Sensitive vs √s

Complete 20-year ILC program ->

H20: 500/fb @ 500 GeV, 200/fb @ 350 GeV, 500/fb @ 250 GeV, 3500/fb @ 500 GeV, 1500/fb @ 250 GeV Based on phenomenology described in Pomerol et al. arXiv:0806.3247

Can probe scales of ~25 TeV in typical scenarios

Marcel Vos (marcel.vos@ific.uv.es)

Top quark couplings: Full MC studies

Measure 2 observables for 2 beam polarisations: total cross section and forward-backward asymmetry

Reconstruction of $e^+e^- \rightarrow tt \rightarrow lvbqqb$ final states

ILC@500GeV L=500fb⁻¹

Polarisation e⁻Le⁺R: -80%, +30% e⁻Re⁺L: +80%, -30%

Eur. Phys. J. C (2015) 75:512 DOI 10.1140/epjc/s10052-015-3746-5

CLIC@380GeV L=500fb⁻¹

Polarisation e⁻Le⁺₀: -80%, 0% e⁻_Re⁺₀: +80%, 0%

Top quark couplings: Observables

Migrations due to ambiguity in b-W pairing

Remedy to address ambiguities: Select cleanly reconstructed events by χ^2 analysis

Top quark couplings: Observables

Curing migrations have a penalty in efficiency

Top quark couplings: Results

ILC@500GeV L=500fb⁻¹

$\overline{\mathcal{P}_{e^-}},\mathcal{P}_{e^+}$	$(\delta\sigma/\sigma)_{\rm stat.}$ (%)	$(\delta A_{\rm FB}^t/A_{\rm FB}^t)_{\rm stat.}$ (%)
-0.8, +0.3	0.47	1.8
+0.8, -0.3	0.63	1.3

CLIC@380GeV L=500fb⁻¹

$\mathcal{P}_{e^-},\mathcal{P}_{e^+}$	$(\delta\sigma/\sigma)_{\rm stat.}$ (%)	$(\delta A_{\rm FB}^t/A_{\rm FB}^t)_{\rm stat.}$ (%)
-0.8, 0	0.47	3.8
+0.8, 0	0.83	4.6

CLIC: similar precision to ILC except for the coupling F_{IA}^{Z} that suffers the large statistical error of A_{FB} ~5%

Conservative scenario for CLIC: NNNL calculations at threshold predict a 3% theory uncertainty

ILC and CLIC can characterise precisely ttγ and ttZ vertices, **an order of magnitude better than LHC** prospects from associated production

$$\begin{split} \Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) &= ie\left\{\gamma_{\mu}(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)) \right. \\ &\left. - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2))\right\}, \end{split}$$

Top quark couplings: CPV sector

The "baseline" study is limited to CP-conserving form factors, but e^+e^- is known to do well also for **CP-violationg F_{2A}** at least since TESLA times

$$\Gamma^{ttX}_{\mu}(k^2, q, \overline{q}) = -ie \left\{ \gamma_{\mu} \left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2) \right) + \frac{\sigma_{\mu\nu}}{2m_t} (q + \overline{q})^{\mu} \left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2) \right) \right\}$$

Reconstructing **optimal CP observables** from W. Bernreuther et. al. arXiv:hep-ph/9602273 In the lepton + jets final state:

$$O_{+}^{Re} = \left(\hat{q}_{+}^{*} \times \hat{q}_{\bar{X}}\right) \cdot \hat{e}_{+} \qquad O_{+}^{Im} = -\left[1 + \left(\frac{\sqrt{s}}{2m_{t}} - 1\right)(\hat{q}_{\bar{X}} \cdot \hat{e}_{+})^{2}\right]\hat{q}_{+}^{*} \cdot \hat{q}_{\bar{X}} + \frac{\sqrt{s}}{2m_{t}}\hat{q}_{\bar{X}} \cdot \hat{e}_{+}\hat{q}_{+}^{*} \cdot \hat{e}_{+}$$

Top quark couplings: CPV Preliminary results

These observables have simple relations to the four $F_{2\mathsf{A}}$ form factors

 $A^{Re}_{\gamma,Z} = \langle O^{Re}_+ \rangle - \langle O^{Re}_- \rangle = c_{\gamma} [PRe(F^{\gamma}_{2A}) + KZRe(F^{Z}_{2A})]$

 $A^{Im}_{\gamma,Z} = \langle O^{Im}_+ \rangle - \langle O^{Im}_- \rangle = d_\gamma [Im(F^\gamma_{2A}) + PKZIm(F^Z_{2A})]$

One can easily isolate $\mathsf{F}_{2\mathsf{A}}$ from previous lineal relations

Full simulations results exist for ILC@500GeV and CLIC@380GeV

Paper of LC potential in the CPV sector in preparation (IFIC-LAL collaboration)

Quantity	$Re[F_{2A}^{\gamma}]$	$Re[F_{2A}^Z]$	$Im[F_{2A}^{\gamma}]$	$Im[F_{2A}^Z]$
SM value at tree level	0	0	0	0
LHC	0.12	0.25	0.12	0.25
TESLA TDR	0.007	0.008	0.008	0.010
ILC $@500$ GeV	0.007	0.011	0.007	0.012
CLIC@380 GeV	0.009	0.013	0.008	0.016

Confirm sensitivity of TESLA TDR study

ertainty

1

Top Yukawa coupling: ttH at LC

The top Yukawa coupling g_{tth} can be directly measured via ttH channel

No Higgsstrahlung: c = 0.50 **ILC 1 TeV:** c = 0.52 **CLIC 1.4 TeV:** c = 0.53

Recent / ongoing benchmark studies based on full

 $\Lambda \sigma$

detector simulations

Δg_{ttH}	$\Delta \sigma$
g_{ttH}	ς σ
be	
rcelo Vogel	
	$\underline{S_{ttH}}$

Talk by Ph.Roloff at Top Workshop 2015 - Valencia

Broad maximum around 800GeV

Investigated final states: "8 jets": $t(\rightarrow q\overline{q}b)\overline{t}(\rightarrow q\overline{q}\overline{b})H(\rightarrow b\overline{b})$ "6 jets": $t(\rightarrow qqb)\overline{t}(\rightarrow lv\overline{b})H(\rightarrow b\overline{b})$ ["4 jets": $t(\rightarrow lvb)\overline{t}(\rightarrow lv\overline{b})H(\rightarrow b\overline{b})$]

Top Yukawa coupling: ttH studies

Crucial tests of various detector performance and reconstruction aspects:

- Jet reconstruction in complex final states
- Flavour tagging
- Charged lepton identification
- Missing energy reconstruction
- Background rejection: tt, other ttH, ttZ, ttg($g \rightarrow bb$)

About 4% precision on the top Yukawa coupling achievable with 1ab⁻¹ at 1TeV at the ILC or 1.5 ab⁻¹ at 1.4TeV at CLIC

Collider	LHC		ILC	ILC	CLIC
CM Energy [TeV]	14	14	0.5	1.0	1.4
Luminosity $[fb^{-1}]$	300	3000	1000	1000	1500
Top Yukawa coupling κ_t	(14 - 15)%	(7-10)%	10%	4%	4%

from arXiv:1311.2028

Investigation of other observables in ttH events possible, like differential distributions to explore the CP properties.

FCNC top decays: $t \rightarrow cH$

F. Zarnecki: Measurement of FCNC top decays at ILC/CLIC studied at parton level.

Top workshop Valencia July 15

https://indico.cern.ch/event/381148/session/5/contribution/4/attachments/759420/1674930/toplc2015.pdf

Expected limits on BR(t \rightarrow ch) × BR(h \rightarrow bb⁻) ~ 10⁻⁵ depending on the energy, luminosity and detector parameters in a H-20 LC full program.

25

FCNC top decays: Status of further studies

Full detector simulation and reconstruction samples of t→cH generated

- Validation of parton-level results
- Waiting for the analysis to produce first results

Last version of WIZHARD includes more FCNC couplings: $t \rightarrow cH(cZ, c\gamma)$

- top-photon, top-gluon and top-Z
- $t \rightarrow c\gamma$ and $e^+e^- \rightarrow tc$ events generated and waiting to be analysed

Summary

Top at Hadron Colliders

- Top mass measured with a precision of 500 MeV
- 5σ significance observed for all top ttV (V=W,Z,γ) production channels
- Yukawa coupling signal strength μ_{ttH} =2.3 ^{+0.7} _{-0.6} ATLAS and CMS combination

Top at Future Linear Colliders

- tt threshold scan: ~ 50 MeV precision in top mass including the different uncertainty sources. Alternative methods in continuum can reach O(100 MeV) precision
- ILC and CLIC can characterise precisely CP conserving and also CP violating ttγ and ttZ vertices, an order of magnitude better than LHC
- About 4% precision on the top Yukawa coupling achievable with 1ab⁻¹ at 1TeV at the ILC or 1.5 ab⁻¹ at 1.4TeV at CLIC
- Expected limits on t → ch, ~10⁻⁵ in a parton level study and new full simulation samples waiting to be analysed

THANK YOU VERY MUCH FOR YOUR ATTENTION

