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Introduction

Big questions - Big ideas (from L-T Wang)
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Introduction

Exploring the space (also from Lian-Tau)
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BSM

In this talk:

@ DM: Because it’s there.

@ Z': Because it could be direct observation of BSM

© (A little about) Precision measurements - mostly covered by

Philipp and Nacho in the previous talks.

© SUSY - always considering LHC prospects
e Because it’s the theory that can address all the “Big Questions”
o Also because different version of it predicts a vast variety of BSM

signals good experimental testing-ground.
e High-lights LC - LHC interplay.
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Dark matter

Dark Matter

Bullet cluster
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Dark matter

Dark Matter
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There is Dark Matter:

@ WIMPs is a good candidate.

@ ... but also axions.

@ ... or maybe massive objects ?
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Only WIMPs

@ Cosmology = 25% of universe = Dark
Matter

@ One possibility: WIMPs (). What if this is
the only accessible NP ?
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Only WIMPs

@ Cosmology = 25% of universe = Dark
Matter

@ One possibility: WIMPs (). What if this is
the only accessible NP ?

@ Search for direct WIMP pair-production at collider : Need to make
the invisible visible:
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Only WIMPs

@ Cosmology = 25% of universe = Dark
Matter

@ One possibility: WIMPs (). What if this is
the only accessible NP ?

@ Search for direct WIMP pair-production at collider : Need to make
the invisible visible:
e Require initial state radiation which will recoil against “nothing”

e LHC: pp — xxg or xxv
o LC: eTe™ —xx (Full simulation study. c. artels, J. List, M.B. ariv:1206.6639v1, and

A. Chaus, Thesis,in preparation.)
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Only WIMPs

@ Cosmology = 25% of universe = Dark
Matter

@ One possibility: WIMPs (). What if this is
the only accessible NP ?

@ Search for direct WIMP pair-production at collider : Need to make
the invisible visible:
e Require initial state radiation which will recoil against “nothing”

e LHC: pp — xxg or xxv
o LC: eTe™ —xx (Full simulation study. c. artels, J. List, M.B. ariv:1206.6639v1, and

A. Chaus, Thesis,in preparation.)
@ Model-independent Effective operator approach to “?”
e Exclusion regions in M, /A plane, for each operator.
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Dark matter

Backgrounds and Signal extraction

Irreducible Backgrounds
@ ee — vvy
e Recoil-mass peaks at Mz
e “switched off” by P(e~)=1.
@ ete v etey
e mimics signal if eTe~
undetected

e crucial to apply veto from low
angle calorimeter

Mass & o from spectrum shape

@ fractional event counting: Weight
events by Spin/v/Bpin
@ Include systematic errors.

polarised beams

P(e~,e")

vy | eteTy

(0%, 0%)

67% | 23%

(+80%, —60%)

25% | 75%
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Comparison with current LHC Results
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Comparison with current LHC Results

@ Examples: 5000 = = opeLr:::r =
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o Axial-vector operator (“spin
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@ LHC reaches higher masses,
ILC smaller cross-section.
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Comparison with current LHC Results

. Vector operator (D5)
@ Examples: 5000~ e
“ . I 72000 'Ple.e)= _— 12370V 3ab
e Vector operator (“spin F T (+80%.60%) '

4000 - 14TeV, 3001 g —

independent”), S, =1/2
o Axial-vector operator (“spin
dependent’), S, =1/2
LHC data: CMS PAS EXO-12-048,projections: arXiv:1307.5327
@ LHC reaches higher masses,
ILC smaller cross-section.
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Comparison with current LHC Results

@ Examples:

e Vector operator (“spin
independent”), S, =1/2

o Axial-vector operator (“spin

dependent”), S, =1/2

LHC data: CMS PAS EXO-12-048,projections: arXiv:1307.5327 100

@ LHC reaches higher masses,

ILC smaller cross-section.
Note:

@ LHC curves assume pure
coupling to hadrons, while

o ILC curves assume pure coupling

to leptons.

o Not a priori comparable; rather

complementary!
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Z’ and friends

@ Z is “everywhere” : Strings, extra-dimesions, composite models,
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Z’ and friends

@ Z is “everywhere” : Strings, extra-dimesions, composite models,

@ If aresonance seen: Obviously BSM.
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Z’ and friends

@ Z is “everywhere” : Strings, extra-dimesions, composite models,

@ If aresonance seen: Obviously BSM.

@ Direct observation of resonace peak vs. Indirect evidence from
modified behavior (couplings, asymetries, angular distributions).

@ First case: Ecys is king; Second case: precision is the one.
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Z’ and friends

@ Z is “everywhere” : Strings, extra-dimesions, composite models,

@ If aresonance seen: Obviously BSM.

@ Direct observation of resonace peak vs. Indirect evidence from
modified behavior (couplings, asymetries, angular distributions).

@ First case: Ecys is king; Second case: precision is the one.

@ le. Direct detection favours hadron colliders, indirect lepton
colliders
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Z’ and friends: Direct observation at LHC

ATLAS Exotics Searches* - 95% CL Exclusion
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Z’ and friends: Direct observation at LHC

ATLAS Exotics Searches* - 95% CL Exclusion ATLAS Preliminary

Status: July 2015 f/_ dt =(4.7-20.3) fo! Vs=7,8TeV
Model Ly Jets ET fraqn) Limit .
ADD Gk +g/q - =1 Yes 1407.2410
AADD non-resonant (¢ 2e.p - - 1311.2006
ADD QBH — fq Teu 1 - 1407.1376
ADD QBH - 2j - TeV, non-rot BH. 1308.4075
g /ADD BH high Nesi. 2p(8S) - - M TeV, non-rot BH. 14054254
£ ADDBH high 3 pr- zlep 22j - 6, Mp = 3 TeV, non-rot BH 1503.08988
E /ADD BH high multijet - =2j - 1405.4123
RS1 Gy 2 - - 9,61
lg Bu\kRSG»«alzﬂaq/f 2ey 2jiy - 150304677
Bulk RS Gk — WW — qalv Teu 21 " J Yes. 1506.00285
Bulk RS Gy — HH —» bbbb - 1505.07018
SSMZ' - ¢t 2ep - 150207177
EGM W' — WZ = tv£'" Ben - Yes 14096190
é HUT W7 — WH - £ 14104103
LRSM W, — tb So 1408.0885
S Clgqit . . 3 W’ LC 1504.04605.
o Direct observation of Z’ or W at any LC is
= EFT DS operator (Dire. 1300.4017
8 EFT 09 operator Ofe . . T o
¢ mizn becoming unlikel
S Scalar LQ 2™ gen . m«mmvy
Scalar LQ 3 gen I B —
22 vavy - Wb X isospin singlet 1505.04306.
88 viaBB—Hb+X 8.1) Gout 0,550
T8 vaBE- 261X 150305425
only u” and . A = m(g") 1300.3230
B ccsquay letthanded couping 12011583
SE Excited quark b* — Wt N 13081364
L (W) = 24 TeV.no. e 1506.06020
LASM Majorana » OY roduction B 14120297
& Higgstriplet He: s ¢ O prscten, s 14112921
S Monoiop (nomres prog) o MW =5 150404180
By - 107 1 o Mass scale [TeV]
*Only a ible mass limits on new states o 0 hown.

Mikael Berggren (DESY BSMatete™ CLICWS15 11/34



Z’ and friends: Indirect observations at LCs
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Z’ and friends: Indirect observations at LCs

—————— e ———————
CMS Projection Preliminary, /s = 14 TeV
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Precision measurements: Higgs, top, ...

Precision measurements: Higgs, top, ...

Just one example:

Fingerprinting

Elementary v.s. Composite

Supersymmetry Composite Higgs
(MSSM) (MCHM5)
MSSM (tanf = 5, M, = 700 GeV) MCHMS (f = 1.5 TeV)
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Precision measurements: Higgs, top, ...

Precision measurements: Higgs, top, ...

Just one example:
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Precision measurements: Higgs, top, ...

Precision measurements: Higgs, top, ...

Just one example:

=
‘g CLICdp prelimina o 350 GeV
= e +3TeV
o]
o I
£ @ HiLumi LHC can only give
15%— S . :
R model-dependent fits (no total width!),
e of O(5) %
2 5% . . .
% o @ LC precision needed to distinguish !
0%k o
w7 |

Mikael Berggren (DESY) BSMatete™ CLICWS15 13/34



Precision measurements: Higgs, top, ...

Precision measurements: Higgs, top, ...

Just one example:

=

‘g CLICdp prelimina o 350 GeV

2z e +3TeV

]

? I

« £ @ HiLumi LHC can only give
37 2 model-dependent fits (no total width!),
T of O(5) %
3 5% I . .
% 0 @ LC precision needed to distinguish !
g sl @ But for details, see the previous two
= ol talks from Philipp and Nacho !
0'.. v

-15%L | | ‘ J
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SUSY: the LHC-LC connection

What if ...
@ LHC finds nothing new.

© LHC finds new particle(s) within LC reach, or that at least hints to
new particles within reach.

© LHC finds new particle(s), but none in LC reach, nor hinting that
there would be any in reach.
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Where do the “hints” come from ?

Why would the mass of the gluino (the sparticle-of-excellence for LHC)
give a hint for the LC?

@ Based on bosino mass unification on the GUT scale.
@ This is different from coupling unification at the GUT scale.
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Where do the “hints” come from ?

Why would the mass of the gluino (the sparticle-of-excellence for LHC)
give a hint for the LC?

@ Based on bosino mass unification on the GUT scale.

@ This is different from coupling unification at the GUT scale.

@ The latter is an indication for new physics at the weak-scale; If
there is no new physics between weak and GUT scales, the RGE
running makes strong, EM and weak couplings equal at different
points for any pair of couplings. If there is, they can all unify at a
single point.
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Why would the mass of the gluino (the sparticle-of-excellence for LHC)
give a hint for the LC?

@ Based on bosino mass unification on the GUT scale.

@ This is different from coupling unification at the GUT scale.

@ The latter is an indication for new physics at the weak-scale; If
there is no new physics between weak and GUT scales, the RGE
running makes strong, EM and weak couplings equal at different
points for any pair of couplings. If there is, they can all unify at a
single point.

@ The former is just an assumption, used to reduce the number of

free parameters (CMSSM/mSUGRA). It has no profound reason
to be, but was useful at LEP-times.
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Where do the “hints” come from ?

Why would the mass of the gluino (the sparticle-of-excellence for LHC)
give a hint for the LC?

@ Based on bosino mass unification on the GUT scale.

@ This is different from coupling unification at the GUT scale.

@ The latter is an indication for new physics at the weak-scale; If
there is no new physics between weak and GUT scales, the RGE
running makes strong, EM and weak couplings equal at different
points for any pair of couplings. If there is, they can all unify at a
single point.

@ The former is just an assumption, used to reduce the number of

free parameters (CMSSM/mSUGRA). It has no profound reason
to be, but was useful at LEP-times.

e This assumption is now challenged by the data.
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What do we know ?

The three LHC scenarios are quite similar as far as SUSY an LC is
concerned: Naturalness, hierarchy, DM, g-2 all prefers light
elector-weak sector. Whether LHC finds nothing, light coloured, or

heavy coloured particles does not change the state of the matter,
because

@ Except for 3d gen. squarks, the coloured sector doesn’t enter the
game.
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What do we know ?

The three LHC scenarios are quite similar as far as SUSY an LC is
concerned: Naturalness, hierarchy, DM, g-2 all prefers light
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heavy coloured particles does not change the state of the matter,
because

@ Except for 3d gen. squarks, the coloured sector doesn’t enter the
game.
@ Even if LHC finds NP, it will be very hard to identify as SUSY.

@ In “natural” SUSY the LSP is a higgsino, and the electro-weak

sector is “compressed”, ie. there is at least some of the EW’s that
are close to the LSP.
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What do we know ?

The three LHC scenarios are quite similar as far as SUSY an LC is
concerned: Naturalness, hierarchy, DM, g-2 all prefers light
elector-weak sector. Whether LHC finds nothing, light coloured, or

heavy coloured particles does not change the state of the matter,
because

@ Except for 3d gen. squarks, the coloured sector doesn’t enter the
game.
@ Even if LHC finds NP, it will be very hard to identify as SUSY.

@ In “natural” SUSY the LSP is a higgsino, and the electro-weak
sector is “compressed”, ie. there is at least some of the EW’s that
are close to the LSP.

@ = most sparticle-decays are via cascades including
bosinos/sleptons, and at the end of these cascades, the mass
difference is small = invisible to the LHC !
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What do we know ?

The three LHC scenarios are quite similar as far as SUSY an LC is
concerned: Naturalness, hierarchy, DM, g-2 all prefers light
elector-weak sector. Whether LHC finds nothing, light coloured, or
heavy coloured particles does not change the state of the matter,
because
@ Except for 3¢ mon anunrlin tha anlausad anntar doegn'’t enter the
game. Hence, that “LHC finds new
@ Even if LHC particle(s), but none in LC reach” ras SUSY.
o In “natural” ¢ does not mean that there aren’t
sector is “co Ny SUSY particles with in LC

are close to .€ach.

@ = most sparticle-decays are via cascades including
bosinos/sleptons, and at the end of these cascades, the mass
difference is small = invisible to the LHC !

lectro-weak
)f the EW'’s that
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Loop-hole free SUSY searches

@ Allis known for given masses, due to
SUSY-principle: “sparticles couples as
particles”.

@ This doesn’t depend on the SUSY breaking  »
mechanism !

@ Obviously: There is one NLSP.

LSP Lsp
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Loop-hole free SUSY searches

@ Allis known for given masses, due to
SUSY-principle: “sparticles couples as
particles”. Lsp ISP

@ This doesn’t depend on the SUSY breaking  »
mechanism !

@ Obviously: There is one NLSP.

So, at an LC :

@ Model independent exclusion/ discovery
reach in My, sp — M, sp plane.

@ Repeat for all NLSP:s.

@ Cover entire parameter-space in a hand-full
of plots

@ NLSP search «» “simplified models” @ LHC!
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Simplified models

@ Simplified methods at
hadron and lepton
machines are different
beasts.

@ At lepton machines
they are quite model
independent, at LHC
model dependent.
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Simplified models

@ Simplified methods at

= = 250
hadro.n and Iept_on § 250 3
machines are different 5ol e 5200
= 200 Exclusion =
beaStS 150 F — Discovery S 150 ’
H "Je\o — Exclusion
@ At lepton machines 100 i 100}~ =
. — Discoven
they are quite model 0 & sl ’
Independent! at LHC 0650700 150 Mzéo 20 0246 542 544 246M2)ts 20,
model dependent. huse 1Ge s (G0
@ A few examples (ue. = <250
arXiv:1308.1461) %250 b %200
~ $'200 | — Exclusion s
o ir NLSP = ) [[NLsP 7,
o 7 NLSP (minimal o). = ™/ 150 £
100k 100 Exclusion .
— Discovery ,'
50| 50
0“50 100150 200" 250" %00 210220 230 240 250
Mysp [GeVI My sp [GeV]
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Simplified models

@ Simplified methods at

hadron and lepton 50| o £ =0
machines are different 5, | Ed
beaStS 150 F — Discovery 150 ’

@ At lepton machines 100 1001~ E_xc'usion
they are c At ILC soovery
independ: Both discover and exclude NLSPs up to BT e

My, sp [GeV]

model de| some GeV:s from the kinematic limit,
@ A few exa whatever the NLSP is, and whatever the
anivia0s.1461) rest of the spectrum is!

e jir NLZ: ) NLSP : 7,
o # NLSP (minimal o). ' " =) ¢
1 ) — Exclusion .

100

100
— Discovery ,'

50 50

0 50 100 150 200 250 %00 210220 230 240 250
Myisp [GeVI Mysp [GeV]

Mikael Berggren (DESY) BSMatete™ CLICWS15 18/34



No loop-holes

150

@ Compare with LHC, here e e e
Atlas (arxiv:1403.5294v1): o | ATLAS S Gpcerved it (£1 6%05)
. . g¥300 J.Ldt=2o.§ fo, 5=8 TeV =nnv Expected imit (+1 0,)
e Di- and tr|'|ept0n Fnn-win2'x ATLAS 4.7 16", \§ = 7 TeV
Searches M~0 — M 4 250 | m=myp Alllimits at 95% CL
’ X2 )?1 ’ r 3L+2L combined & o,
BI’(X — W(*)/Z(*)X?):'I . 200? e @\// o

100

50

v
b b b b b

£ | i

PN A W IR I Rt 1 N

100 150 200 250 300 350 400 450 500
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No loop-holes

@ Compare with LHC, here e e e
Atlas (arxiv:1403.5294v1): o | ATLAS B Grcorved it (£162) 1

. . g¥300 J.Lm=2o.a1b", [5-8 TeV ~---- Expeced limit (10,g)

e Di- and tr|'|ept0n Fnn-win2'x ATLAS 47 1", (§=7Tev |
Searches M~0 — M 4 250 | m=myp Alllimits at 95% CL =

’ XZ 561 ’ [ slsal com:bmed v ’L‘(\'i‘ !

Br(X - W(*)/Z(*)j&?)=1 i 200? e @\// o *;

. = L 4

@ Note cut x-axis! 150 =
100; é

50l ]

L I : ]

oPiee™ il

100 150 200 250 300 350 400 450 500
Mo o [GeV]
2 *1
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No loop-holes

@ Compare with LHC, here % 30 rreerrrrprrrrrrrrprrrerprerer ey
©) v
Atlas (arxiv:1403.5294v1) 30 ATLAS Observed mit(153%5) ]
. . _[Ldt=20.3fo",\s=eTev »»»»» Expected lmit (£10,,)
e Di- and tr|'|ept0n Lo w08 ATLAS 4.716% \s =7TeV |
SearCheS, M~0 = M~j:, 250 M=o Alllimits at95% CL
X2 X4 3L+42L combined &

7

Br(x — W()/Z050)=1. 0
@ Note cut x-axis! Here is LEP 10
Y7 only, any decay-mode!
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No loop-holes

@ Compare with LHC, here 5 30 e e
©)
Atlas (arxiv:1403.5294v1): 30 ATLAS Observed it (41685
. . E _[ Ldt=203fb", 158 TeV =---- Expected limit(+1.0,,)
° DI- and t”'lepton F gfg‘;aw"’;“’z"’i‘]’ ATLAS 4.7 fb”, \s =7 TeV
SearCheS M~0 = M + 250 } M =My Alllimits at 95% CL
’ X2 )21 ’ C 3L+l2L corrzbmed v
~0 _ . 4
Br(x — W(*)/Z(*)X1)—1- 200 - N s

@ Note cut x-axis! Here is LEP 150
Y7 only, any decay-mode!

@ Below thick line: Can't fulfil
gaugino-mass GUT-relation.
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No loop-holes

@ Compare with LHC, here
Atlas (arxiv:1403.520av1):
e Di- and tri-lepton
searches, Mig = M)aj:,

Br(x — W) /Z(){9)=1.
@ Note cut x-axis! Here is LEP
Y7 only, any decay-mode!
@ Below thick line: Can’t fulfil
gaugino-mass GUT-relation.

@ Projections to 14 TeV

300/3000 fb~! (arxiv:1307.7202v2)..
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No loop-holes

@ Compare with LHC, here
Atlas (arxiv:1403.520av1):

e Di- and tri-lepton
searches, Mig = Mﬁ,
Br(x — W) /Z(){9)=1.
@ Note cut x-axis! Here is LEP
Y7 only, any decay-mode!
@ Below thick line: Can’t fulfil
gaugino-mass GUT-relation.
@ Projections to 14 TeV
300/3000 fb~! (arxiv:1307.7202v2)..

. and now

B350
o ]
= ATLAS Observed limit (+1055Y)
oz ]
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No loop-holes

@ Compare with LHC, here  § 30 e
Atlas (arxiv:1403.5294v1) 2. ATLAS
. . g 300 Ldt=20.3"
e Di- and tri-lepton F - WIE 27
250 me=my

searches, Mig = M)aj:,
Br(x — W) /Z(:){9)=1
Note cut x-axis! Here is LEP
Y7 only, any decay-mode!
Below thick line: Can’t fulfil
gaugino-mass GUT-relation.
Projections to 14 TeV
300/3000 fo~*
.. and now
ILC at 500 GeV

(arXiv:1 307.7292v2) .
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No loop-holes

@ Compare with LHC, here
Atlas (arxiv:1403.520av1):

e Di- and tri-lepton
searches, Mig = M)aj:,
Br(x — W) /Z(:){9)=1

Note cut x-axis! Here is LEP
Y7 only, any decay-mode!
Below thick line: Can’t fulfil
gaugino-mass GUT-relation.
Projections to 14 TeV
300/3000 fo~*

... and now
ILC at 500 GeV...at 1 TeV

(arXiv:1 307.7292v2) .
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No loop-holes

@ Compare with LHC, here
Atlas (arxiv:1403.520av1):

e Di- and tri-lepton
searches, ng = M)-hj:,
Br(x — W) /Z(){9)=1.
@ Note cut x-axis! Here is LEP,
Y7 only, any decay-mode!
@ Below thick line: Can’t fulfil
gaugino-mass GUT-relation.
@ Projections to 14 TeV
300/3000 fb~! (arxiv:1307.7202v2)..

... and now
ILC at 500 GeV...at 1 TeV...and CLIC at 3 TeV
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No loop-holes

@ Compare with LHC, here
Atlas (arxiv:1403.520av1):

e Di- and tri-lepton
searches, M>~(o =M.z,
(2 X1
Br(x — W) /Z(){9)=1.
@ Note cut x-axis! Here is LEP,
Y7 only, any decay-mode!
@ Below thick line: Can’t fulfil
gaugino-mass GUT-relation.

@ Projections to 14 TeV
300/3000 fb~! (arxiv:1307.7202v2)..
... and now

ILC at 500 GeV...at 1 TeV...and CLIC at 3 TeV = Lots of plain vanilla
SUSY to explore at LC:s!

Mikael Berggren (DESY) BSMatete™ CLICWS15 19/34




SUSY at CLIC: Explore heavy spectra
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SUSY at CLIC: Explore heavy spectra

@ Eg. SUSY model Il from CDR
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SUSY at CLIC: Explore heavy spectra

.0k - ]
@ Eg. SUSY model Ill from CDR T 1° & X —Higgs
K] [ 1 —=ns
o )2?:: _> )’Z? W g 102 —— charginos
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~ ~ 10k ] squark
° Xg - X?h § = —smi
= L y— =] — %W
© ! y ,"// — neutralinos
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SUSY at CLIC: Explore heavy spectra

E‘ 3L - .
@ Eg. SUSY model lll from CDR T ° § Hx — Higgs
2 [ 1 —=ns
Y j‘é?ll: N )’Z? W g 10? —— charginos
1] squark
~ ~ [} 10 L squark
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0 lu-pall’S — neutralinos
10—1 L ! (SUSY model IIl)
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SUSY at CLIC: Explore heavy spectra
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SUSY at CLIC: Explore heavy spectra

oy
° Eg SUSY model Il from CDR =10°F T — e
o R
° ¥f = 0w ER
X1 X1 o 9
o X2 — X1h é 10F ] :\?VMV!?\
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Why compressed spectra ? Natural SUSY: Light,
degenerate higgsinos

Why would one expect the spectrum to be compressed ?
@ Natural SUSY:

my,, tan? B—n;
e = Low fine-tuning = p = O(weak scale).

@ But also: the data ...

Mikael Berggren (DESY) BSMatete™ CLICWS15
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Why compressed spectra ? Global fits

pMSSM10 prediction: best-fit masses

2

2500

Particle Masses [GeV]
- .
8
g

I —r— = L
Mo Myo My M= M9 Mg Mo myo My mye mg - mg

I L
me mg, o omg Mg Mo Mg Mg M,y

= high colored masses

= relatively low electroweak masses
partially with not too large ranges

= clear prediction for ILC and CLIC

Sven Heinemeyer, LCWS15, Whistler, 03.11.2015 14
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Natural SUSY: Light, degenerate higgsinos

@ Natural SUS);: , ,
utan B—m
°omg =2 H1—tan26 =2

e = Low fine-tuning = 1 = O(weak scale).

o If multi-TeV gaugino masses:
e §9, %5 and ¥ pure higgsino. Rest of SUSY at multi-TeV.
° Mi?,z’ M)’qi S
@ Degenerate (AM is 1 GeV or less)
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Natural SUSY: Light, degenerate higgsinos

@ Natural SUS);: , ,
utan B—m
o m; =2 H1—tan26 =2

e = Low fine-tuning = 1 = O(weak scale).
o If multi-TeV gaugino masses:
e §9, %5 and ¥ pure higgsino. Rest of SUSY at multi-TeV.
° Mi?,z’ M)’qi S
@ Degenerate (AM is 1 GeV or less)
@ To detect: Tag using ISR photon, then look at rest of event:
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Natural SUSY: Light, degenerate higgsinos

@ Natural SUS);: , ,
, tan? B—m
o m; =2 H1—tan26 =2

e = Low fine-tuning = 1 = O(weak scale).
o If multi-TeV gaugino masses:
e §9, %5 and ¥ pure higgsino. Rest of SUSY at multi-TeV.
° Mi?,z’ M)’qi S
@ Degenerate (AM is 1 GeV or less)
@ To detect: Tag using ISR photon, then look at rest of event:

SUSY signal and ~~ background

Signal Two photon background
VB oy y
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Natural SUSY: Light, degenerate higgsinos

@ Natural SUS);: , ,
, tan? B—m
o m; =2 H1—tan26 =2

e = Low fine-tuning = 1 = O(weak scale).
o If multi-TeV gaugino masses:
e §9, %5 and ¥ pure higgsino. Rest of SUSY at multi-TeV.
° Mi?,z’ M)’qi S
@ Degenerate (AM is 1 GeV or less)
@ To detect: Tag using ISR photon, then look at rest of event:

SUSY signal and ~~ background ... and with an ISR photon in addition

Signal Two photon background Signal Two photon background
Wy y VT ay y
B
L L L | L LI L
z z — z z
] ] ] ] o 5
e W
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Natural SUSY: Light, degenerate higgsinos

@ Studied model points:

o e e e R A S A

° dm1600 A(M)=1 6 Gev; § r ATLAS === Observed limit (+1cj5.07) E
mp=124 GeV, M>20=1 64.2 ENSOO; Lot=20810", {58 TeV === Expected imit (+10,,)
GeV ! C i:igﬂw()i?z“i? ATLAS 4.7 fb", Vs =7 TeV ]

) 250 — e = Mye Al limits at 95% CL =

o dm770: A(M)=0.77 GeV, R e ]
mp=127 GeV, M,=166.6 W S o E
I . ]

GeV. 150 } Qi ; {
100; 3 é

L, : \ i ]

\\ H J

50 — [ —

7 Vil ]

Pttt vl o

100 150 200 250 300 350 400 450 500
Moo [GeV]
2’ M

H. Sert, F. Brummer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]
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Natural SUSY: Light, degenerate higgsinos

@ Studied model points:

150

@ Very hard for LHC.

100

5 380 T T T T
e dm1600: A(M)=1 6 Gev’ 5 r ATLAS === Observed limit (+13)
mp=124 GeV, M>20=1 64.2 300~ Ldt=20310", 158 TeV === Expected imit (+16,)
GCV 1 E i:iﬂwuz?zui? ATLAS 4.7 b", \s =7 TeV
) 250 - m;=m, Alllimits at 95% CL
e dm770: A(M)=077 GeV, [ ot combined o e
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H. Sert, F. Brummer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]
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Natural SUSY: Light, degenerate higgsinos

@ Studied model points:

° Chazntﬂg: Only efe™ —%9¢3
or {1 {7 in s-channel (no {99
due to weak isospin, no
t-channel due to higgsino
nature)
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GeV. ‘ sob e TR ezt a7 3

e dm770: A(M)=0.77 GeV, F stz comoies & s ]
mp=127 GeV, My»=166.6 wE o :

GCV. 150;@\ * < = _f

@ Very hard for LHC. E - ]
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H. Sert, F. Brummer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]
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SUSY with light bosinos, sleptons, heavy coloureds

Recall:
@ The reason that mM\SUGRA/CMSSM is dead is the irrelevant part!

Mikael Berggren (DESY) BSMatete™ CLICWS15 25/34



SUSY with light bosinos, sleptons, heavy coloureds

Recall:
@ The reason that mM\SUGRA/CMSSM is dead is the irrelevant part!

@ le. : LHC excludes 1:st & 2:nd generation squarks and gluinos.
These states have no influence on DM, g-2, naturalness, ...
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SUSY with light bosinos, sleptons, heavy coloureds

Recall:
@ The reason that mM\SUGRA/CMSSM is dead is the irrelevant part!

@ le. : LHC excludes 1:st & 2:nd generation squarks and gluinos.
These states have no influence on DM, g-2, naturalness, ...

@ Lifting the connection between 1:st & 2:nd generation squarks and
gluinos on one side and the 3:d generation squarks and
electro-weak sector on the other side avoids this, at the price of
have a few more free parameters.

@ Actually, the U(1) and SU(2) masses (My and M) can still unify.
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Heavy coloured, light uncoloured
The STCx models at LHC & ILC

@ 11 parameters.

@ All low-energy, cosmological, and LHC observations OK.
@ Fine-tuning OK.

@ Observable at LHC 14, so we will know within a few years.

(See arXiv:1508.04383)
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Heavy coloured, light uncoloured
The STCx models at LHC & ILC

@ 11 parameters.

@ All low-energy, cosmological, and LHC observations OK.
@ Fine-tuning OK.

@ Observable at LHC 14, so we will know within a few years.

@ But we won’t know what LHC saw - not even if it is SUSY, or some
other BSM physics.

@ ILC, on the other hand, will be able to tell.
(See arXiv:1508.04383)
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Heavy coloured, light uncoloured
Full STCx mass-spectrum

High mass squarks+gluino
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Heavy coloured, light uncoloured
STCx @ LHC14

= LHC expectations

@ Despite the high cross-section, the low amount of missing E+ and
the long decay chains will make direct bosino and slepton
observations hard.
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Heavy coloured, light uncoloured
STCx @ LHC14

= LHC expectations

@ Despite the high cross-section, the low amount of missing E+ and
the long decay chains will make direct bosino and slepton
observations hard.

@ The simple decay-chains and very high missing Et will make first-
and second-generation squark production easy to detect.
However, the cross-section is so low that it is still challenging.

@ Third generation squark production constitute a good compromise
between cross-section and visibility, and will be the most powerful
discovery channel. The lower cross-section in STC10 is
compensated by higher visibility.
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LHC observations

@ Discovery channel is 1 pairs to single, isolated lepton.
@ ... but low purity.
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LHC observations

@ Discovery channel is 1 pairs to single, isolated lepton.

@ ... but low purity.

@ A “diffuse” bosino signal can be detected, in a three-lepton search.
@ The b can be detected in a reasonably clean sample.

@ 1:st and 2:nd generation squarks and gluinos are produced, but
due to the high masses, at low rates.

= LHC expectations

@ Although STCx will be discovered at LHC14 if it is realised in
nature, it will be very hard to see that it is SUSY, not some other
new physics.
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Heavy coloured, light uncoloured
STC4 sleptons @ 500 GeV:e, i

@ Selections for ji and €:
e Correct charge.
@ P7 wrt. beam and one ¢ wrt the
other.
e Tag and probe, ie. accept one jet if
the other is “in the box”.
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@ Selections for ji and €:
e Correct charge.
e Pr wrt. beam and one ¢ wrt the
other.
e Tag and probe, ie. accept one jet if
the other is “in the box”.
@ Further selections for R:
e Cuts on polar angle and angle
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STC4 sleptons @ 500 GeV:e, i

@ Selections for ji and &: o [T ey
0 Cleq
e Correct charge. 000 s ]

@ P7 wrt. beam and one ¢ wrt the
other.
e Tag and probe, ie. accept one jet if
the other is “in the box”. 2000 |
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BSM: Machine and Detectors

BSM: Machine and Detectors

So, we found that experimentaly, LC-BSM is largely a question of
SM-particles + missing stuff.

le. we need to See the unseen.
@ We need to know what we see.
@ We need to know what we would expect to see.
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BSM: Machine and Detectors

BSM: Machine and Detectors

So, we found that experimentaly, LC-BSM is largely a question of
SM-particles + missing stuff.

le. we need to See the unseen.
@ We need to know what we see.
@ We need to know what we would expect to see.

@ ... and determine the difference between the two.
@ Implies:

@ Need to be hermetic, in space and time.
o Need to know the initial state as well as possible.
o Need to know what SM one sees, including W/Z/h.
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An LC is not LHC

What is then the edge for LCs wrt. hadron colliders ?
@ Lepton-collider: Initial state is known.
@ Production is EW =

e Small theoretical uncertainties.

o No “underlying event”.

@ Low cross-sections wrt. LHC, also for background.
e = Trigger-less operation = hermetic in time.
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An LC is not LHC

What is then the edge for LCs wrt. hadron colliders ?

@ Lepton-collider: Initial state is known.
@ Production is EW =

e Small theoretical uncertainties.

o No “underlying event”.

@ Low cross-sections wrt. LHC, also for background.
e = Trigger-less operation = hermetic in time.

= for detectors:

@ Low background =- detectors can be:

@ Thin: few % Xg in front of calorimeters

o Very close to IP: first layer of VXD at 1.5 cm.

o Close to 47 holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande relative to earth.
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LC Detectors

@ The enemy to seeing the unseen: Acceptance holes !

e Importance of hermeticity for the searches: v+ rejection, and ISR
detection.
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@ The enemy to seeing the unseen: Acceptance holes !
e Importance of hermeticity for the searches: v+ rejection, and ISR
detection.
@ The need to know what we see: High precision measurements:

o Extremely high demands on tracking.

e Tracking to low angles

o Identify and measure every particle in the event = Particle-flow:
@ Measure charged particles with tracker, neutrals with calorimeters.
@ Need to separate neutral clusters from charged in calorimeters.
@ Separate showers in calorimeters =- high granularity.
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LC Detectors

@ The enemy to seeing the unseen: Acceptance holes !
e Importance of hermeticity for the searches: v+ rejection, and ISR
detection.
@ The need to know what we see: High precision measurements:

o Extremely high demands on tracking.
e Tracking to low angles
o Identify and measure every particle in the event = Particle-flow:
@ Measure charged particles with tracker, neutrals with calorimeters.
@ Need to separate neutral clusters from charged in calorimeters.
@ Separate showers in calorimeters =- high granularity.
@ Control unseen SM, ie. neutrinos:

e Reduce with polarisation.
o Constrained kinematic fitting.

Mikael Berggren (DESY) BSMatete™ CLICWS15 33/34



Conclusions

Conclusions

BSM at any LC:
@ DM:
o Model-independent and LHC complementary reach.
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Conclusions

Conclusions

BSM at any LC:

o DM:

Model-independent and LHC complementary reach.

o Z etc.:

Indirect search reach much higher than LHC - excellent direct
detection possibilities for CLIC, but LHC is closing the window.

@ SUSY:

Loop-hole free discovery potential for SUSY, up to the kinematic
limit.

Includes a vast and quite likely region of moderate-to-small
LSP-NLSP mass-differences, not explorable by hi-lumi LHC.

In models with a rich spectrum reachable by LCs, LHC discovery
will be corroborate on.

In particular, will be able to prove that the NP discovered at LHC is
SUSY.

For models with high masses, or with only mass-degenerate
higgsinos below multi TeV, LCs might be the discovery machines.
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@ Few-body decays and
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Natural SUSY: Light, degenerate higgsinos

@ Few-body decays and
radiative decays (for 3)
(calculated with Herwig). R

@ Separate %7 from {9: Either [
semi-leptonic f.s.: Only %7, or [
~: only X9. | A il

250 300 350 400 450 500

@ E,sp gives reduced Vs’ \s/Gev
“auto-scan”. End-point gives
masses to ~ 1 GeV.

@ Close to end-point, E; gives :
10 AM™ = 0.81+0.04 GeV ]

A(Myo, M=) to ~ 100 MeV. I m ]
oE ‘ ‘
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@ Use to extract the
model-parameters u, My and
M, (little tan 5 dependence).
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Natural SUSY: Light, degenerate higgsinos

@ Use to extract the
model-parameters u, My and
M, (little tan 5 dependence).

@ ;. can be determined to + 4 %.

@ Limits on My and M, after
[ L£=2ab~",

@ For both models: Sign
determined, allowed lower and

upper limits on M» (for
dm1600 also for My).

ok
-20

dM1600

AMOG, 2, 2ab’

— tanp <50
- tanB =10

dm770

AM( D), 2ab”

— tanp <50
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STCx @ LHC14

@ STC8 and STC10 studied by I. Melee-Pullmans group at DEWY
with fastsim (Delphes).
@ Main features at LHC 14 TeV:

Cross-sections:

° WX > XX > FF > 0> >bb> g > UK > 99
ranging from 1.5 pb to 1 fb. M and MB is 200 GeV higher in STC10
— Cross-sections for it and bb 5 x smaller in STC10 wrt STCS8.
Y cascade-decays to 7:s + the LSP in 75 % of the cases, often
together with a boson (Z, W or h).

@ For %2, the rest is either only bosons, or "nothing” (ie. neutrinos).

@ For §* the rest is other leptons.
The 7:s mostly come from 7 — 73, where the mass difference is
only 10 GeV=> little missing energy.
b mostly decays to bi° : > 50 % to by9. But also to t5* (20%)
f always goes to t{°, but rarely to t59 (~ 10%).
The right-handed gen1 and 2 squarks almost always decay directly
to quark+LSP.
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@ STC8 and STC10 studied by I. Melee-Pullmans group at DEWY
with fastsim (Delphes)

= LH-C'exbeCtationé '
@ Despite the high cross-section, the low amount of missing E+ and
the long decay chains will make direct bosino and slepton
observations hard.

@ The simple decay-chains and very high missing Et will make first-
and second-generation squark production easy to detect.
However, the cross-section is so low that it is still challenging.

@ Third generation squark production constitute a good compromise
between cross-section and visibility, and will be the most powerful
discovery channel. The lower cross-section in STC10 is
compensated by higher visibility.

@ Ine rrngni-nanaea gerni ana £ squarks alimost aiways aecay airecuy
to quark+LSP.



STCx at ILC 250, 350 and 500 GeV

Channel | Threshold | Available at | Can give
T171 212 250 Mz, , 74 nature,

T polarisation
[IR fiR 252 250+ + My, Mx?’ [ir Nature
EreR 252 250+ + Mg, Mi?, ér Nature
9597 | 302 350 + Mg, Mo, nature of 55, 3
F1io") 325 350 + M0 . =
EréL® 339 350 + M, %Y mixing, & nature
Dz 392 500 7 % visible BR (— 74 W)
FEREY | 412 500 + M_+, nature of ¢y

1

ger) | 416 500 + M, Mo, & nature
A | 416 500 + My, Mo, fix nature
Foftp®) 438 500 + Mz, Mo, 72 nature, 6, »
2%2” | 503 500+ + Mo, Mo, nature of 59, 3

*): Cascade decays.

+ invisible {99,

Vs jile i




Conclusions

Observables:

| Observable | Gives [ If |
Edges (or average and ... not too far from
width) Masses threshold
Shape of spectrum Spin
Angular distributions Mass, Spin
Invariant mass distributions
from full reconstruction Mass ... cascade decays
Angular distributions from
full reconstruction Spin, CP, ... masses known
Un-polarised Cross-section
in continuum Mass, coupling
Polarised Cross-section Mass, coupling,
in continuum mixing
Decay product polarisation | Mixing ... T decays
Threshold-scan Mass(es), Spin
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SGV P
From these spectra, we can 2 18|
estimate M~ _, and M., to < $ | coa@10m’/point
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SGV P
From these spectra, we can 2 18|
estimate Msx_, and M, to < N
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MR ‘@ fit of B to data
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8
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Conclusions

fir threshold scan

SGV P
From these spectra, we can 5 F
estimate My, and Mo to < [ cdaaion’poin
R X4 £ 16  — fitof B” to data : 3M; = 220 MeV
0.2 GeV, and M~_ to < 0.5 GeV. & g4 | M= 126804022 GeV
MR t:)i 14 L fitof p to data

° 12

So: Next step is M; from threshold: ;|

@ 10 points, 10 fo~/point.

8
6
@ Luminosity < Ecys, SO this is 4
<170 fo! @ Ecpns=500 GeV. 2
0

"/Y/»::’\V' - N N N N N N N
253 254 255 256 257 258 259 260 261,262 263
Vs [GeV]

Error on M/ZR =197 MeV.




fir threshold scan

SGV P.s0.30
18

From these spectra, we can
estimate MER’ and M;(? to <
0.2 GeV, and MﬂR to < 0.5 GeV.

« data 10 fo™" / point
16 |- — fit of B° to data : SM; = 220 MeV
- M; = 126.80 £0.22 GeV

14 fit of B to data

5(ee —pgip) [fb]

So: Next step AtILC
Can show that this is SUSY:

@ 10 points, @ All the sleptons are there.
@ Luminosit @ Sleptons are scalars.
< 170fb" e They do couple as their SM-partners.

L L L
253 254 255 256 257 258 259 260 261, 262 263
\s [GeV]

Error on M/ZR =197 MeV.
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