Vector Boson Scattering at CLIC: Determination of anomalous gauge couplings

Christian Fleper
University of Siegen
christian.fleper@uni-siegen.de

January 21, 2016
in collaboration with W. Kilian, T. Ohl, J. Reuter, M. Sekulla

Introduction

- Higgs field is responsible for electroweak symmetry breaking $S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}$
- Details of symmetry breaking still unknown
- Vector boson scattering is sensitive to new physics in the Higgs sector
- New physics: additional resonances or anomalous couplings

Effective field theory and anomalous couplings

- $\mathcal{L}_{\text {eff }}=\mathcal{L}_{S M}+\sum_{i} \mathcal{L}_{i}$
- Relevant longitudinal dimension eight operators:

$$
\begin{aligned}
& \mathcal{L}_{S, 0}=F_{S, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}_{\nu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}^{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right] \\
& \mathcal{L}_{S, 1}=F_{S, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}_{\nu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]
\end{aligned}
$$

H linear representation of the Higgs field

- Goal: measure couplings $F_{S, 0}$ and $F_{S, 1}$

$$
\mathbf{H} \equiv \frac{1}{2}\left(\begin{array}{cc}
v+h-i w^{3} & -i \sqrt{2} w^{+} \\
-i \sqrt{2} w^{-} & v+h+i w^{3}
\end{array}\right)
$$

Vector boson scattering

Figure: Feynman diagram for vector boson scattering in a fermion antifermion collision.

Signal and background processes in VBS

Figure: Feynman diagrams contributing to the vector boson scattering signal.

Signal and background processes in VBS

Figure: Feynman diagrams contributing to the vector boson scattering signal.

Figure: Feynman diagrams contributing to the irreducible background.

Signal and background processes in VBS

Figure: Feynman diagrams contributing to the vector boson scattering signal.

Figure: Feynman diagrams contributing to the partially reducible background.

CLIC

CLIC energy stages and int. luminosities

- $\left(E_{1}=350 / 375 \mathrm{GeV}, \mathcal{L}_{\text {int }, 1}=500 \mathrm{fb}^{-1}\right)$
- $E_{2}=1400 \mathrm{GeV}, \mathcal{L}_{\text {int }, 2}=1500 \mathrm{fb}^{-1}$
- $E_{3}=3000 \mathrm{GeV}, \mathcal{L}_{\text {int }, 3}=2000 \mathrm{fb}^{-1}$

CLIC

CLIC energy stages and int. luminosities

- $\left(E_{1}=350 / 375 \mathrm{GeV}, \mathcal{L}_{\text {int }, 1}=500 \mathrm{fb}^{-1}\right)$
- $E_{2}=1400 \mathrm{GeV}, \mathcal{L}_{\text {int }, 2}=1500 \mathrm{fb}^{-1}$
- $E_{3}=3000 \mathrm{GeV}, \mathcal{L}_{\text {int }, 3}=2000 \mathrm{fb}^{-1}$

Initial state polarization

$e^{-}: 80 \%$
$e^{+}: 0 \%$

CLIC

CLIC energy stages and int. luminosities

- $\left(E_{1}=350 / 375 \mathrm{GeV}, \mathcal{L}_{\text {int }, 1}=500 \mathrm{fb}^{-1}\right)$
- $E_{2}=1400 \mathrm{GeV}, \mathcal{L}_{i n t, 2}=1500 \mathrm{fb}^{-1}$
- $E_{3}=3000 \mathrm{GeV}, \mathcal{L}_{\text {int }, 3}=2000 \mathrm{fb}^{-1}$

Initial state polarization

e^{-}: 80\%
$e^{+}: 0 \%$
Low angle coverage m. Idzik: DOI: 10.5506/APhysPolB.46.1297

- LumiCal: 38-110 mrad
- BeamCal: 15-38 mrad

CLIC

CLIC energy stages and int. luminosities

- $\left(E_{1}=350 / 375 \mathrm{GeV}, \mathcal{L}_{i n t, 1}=500 \mathrm{fb}^{-1}\right)$
- $E_{2}=1400 \mathrm{GeV}, \mathcal{L}_{i n t, 2}=1500 \mathrm{fb}^{-1}$
- $E_{3}=3000 \mathrm{GeV}, \mathcal{L}_{\text {int }, 3}=2000 \mathrm{fb}^{-1}$

Initial state polarization

$e^{-}: 80 \%$
$e^{+}: 0 \%$
Low angle coverage m. Idzik: DOI: 10.5506/APhysPolB.46.1297

- LumiCal: 38-110 mrad
- BeamCal: 15-38 mrad

W and Z identification J. S. Marshall, A. Mnnich, M. A. Thomson: arxiv:1209.4039

- $\approx 88 \%$ (with photon induced bkg.: 71-79 \%)

- Event generator for collider physics
- Matrix element generator O'Mega
- Efficient phase space and event generation
- Current release: 2.2.8 (November 22nd, 2015)

Total cross sections without cuts

Process	1400 GeV	3000 GeV	Factor
$W^{+} W^{-} \nu \bar{\nu}$	47.1	132	1
$W^{+} W^{-} e^{+} e^{-}$	1570	3820	1
$W^{ \pm} Z e^{\mp} \nu$	138	408	0.136
$Z Z e^{+} e^{-}$	3.78	4.70	0.019
$W^{+} W^{-}(Z \rightarrow \nu \bar{\nu})$	11.7	9.35	1
$Z Z \nu \bar{\nu}$	15.7	57.5	1
$Z Z e^{+} e^{-}$	3.78	4.70	1
$W^{ \pm} Z e^{\mp} \nu$	138	408	0.136
$W^{+} W^{-} e^{+} e^{-}$	1570	3820	0.019
$Z Z(Z \rightarrow \nu \bar{\nu})$	0.484	0.237	1

Table: Total cross sections in fb without cuts (error $\approx 1 \%$).

Differential cross sections

Figure: Differential cross sections depending on the transverse momentum of the W boson pair at $\sqrt{s}=3000 \mathrm{GeV}$.

Used cuts

(1) $M_{\text {inv }}(\bar{\nu} \nu)>230(175) \mathrm{GeV}$ (neutrinos originate from Z decay, backgrounds from $W^{+} W^{-}$and QCD four-jet production)
(2) $|\cos \theta(W / Z)|<0.8$ and $p_{\perp}(W / Z)>300(180) \mathrm{GeV}$ (backgrounds which result from t-channel exchange in the subprocess)
(3) $\theta(e)>15 \mathrm{mrad}$ and $p_{\perp}(W W)>100(50) \mathrm{GeV}, p_{\perp}(Z Z)>60(40) \mathrm{GeV}$ (background resulting from $\gamma \gamma$ fusion)
(9) $900(800) \mathrm{GeV}<M_{\text {inv }}(W W)<1900(1175) \mathrm{GeV}$, 850(800) $\mathrm{GeV}<M_{\text {inv }}(Z Z)<1900(1175) \mathrm{GeV}$ (non scattered vector bosons)

Cross sections with cuts

Process	1400 GeV	3000 GeV	Factor
$W^{+} W^{-} \nu \bar{\nu}$	0.119	0.790	1
$W^{+} W^{-} e^{+} e^{-}$	0.000	0.000	1
$W^{ \pm} Z e^{\mp} \nu$	0.269	1.200	0.136
$Z Z e^{+} e^{-}$	0.000	0.000	0.019
$W^{+} W^{-}(Z \rightarrow \nu \bar{\nu})$	0.039	0.610	1
$Z Z \nu \bar{\nu}$	0.084	0.790	1
$Z Z e^{+} e^{-}$	0.000	0.000	1
$W^{ \pm} Z e^{\mp} \nu$	0.288	1.593	0.136
$W^{+} W^{-} e^{+} e^{-}$	0.000	0.000	0.019
$Z Z(Z \rightarrow \nu \bar{\nu})$	0.000	0.000	1

Table: Total cross sections in fb with cuts (error $\approx 1 \%$).

Cross sections at 1400 GeV

Figure: Total cross sections of $e^{+} e^{-} \rightarrow W^{+} W^{-} \nu \bar{\nu}$ depending on $F_{S, 0}$ and $F_{S, 1}$ at $\sqrt{s}=1400 \mathrm{GeV}$ without unitarization.

Exclusion contours and exclusion sensitivities at 1400 GeV

Figure: $\pm 1 \sigma$ exclusion contours and 90% exclusion sensitivity in the $F_{S, 0} / F_{S, 1}$ plane at $\sqrt{s}=1400 \mathrm{GeV}$ without unitarization.

Exclusion contours and exclusion sensitivities at 1400 GeV

$\Rightarrow 90 \%$ exclusion sensitivity $\approx 30-40 \mathrm{TeV}^{-4}$

Figure: $\pm 1 \sigma$ exclusion contours and 90% exclusion sensitivity in the $F_{S, 0} / F_{S, 1}$ plane at $\sqrt{s}=1400 \mathrm{GeV}$ without unitarization.

Exclusion contours and exclusion sensitivities at 3000 GeV

Figure: $\pm 1 \sigma$ exclusion contours and 90% exclusion sensitivity in the $F_{S, 0} / F_{S, 1}$ plane at $\sqrt{s}=3000 \mathrm{GeV}$ with unitarization.

Exclusion contours and exclusion sensitivities at 3000 GeV

$\Rightarrow 90 \%$ exclusion sensitivity $\approx 5-7 \mathrm{TeV}^{-4}$

Figure: $\pm 1 \sigma$ exclusion contours and 90% exclusion sensitivity in the $F_{S, 0} / F_{S, 1}$ plane at $\sqrt{s}=3000 \mathrm{GeV}$ with unitarization.

Actual values

Theoretical CLIC values

$-40 \mathrm{TeV}^{-4}<F_{S, 0,1}<40 \mathrm{TeV}^{-4}(1400 \mathrm{GeV})$
$-7 \mathrm{TeV}^{-4}<F_{S, 0,1}<7 \mathrm{TeV}^{-4}(3000 \mathrm{GeV})$
Latest ATLAS analysis c. Aad et al:: arxiv: 1405.6241
$-461 \mathrm{TeV}^{-4}<F_{S, 0}<527 \mathrm{TeV}^{-4}$
$-758 \mathrm{TeV}^{-4}<F_{S, 1}<791 \mathrm{TeV}^{-4}$

Actual values

Theoretical CLIC values

$-40 \mathrm{TeV}^{-4}<F_{S, 0,1}<40 \mathrm{TeV}^{-4}(1400 \mathrm{GeV})$
$-7 \mathrm{TeV}^{-4}<F_{S, 0,1}<7 \mathrm{TeV}^{-4}(3000 \mathrm{GeV})$
Latest ATLAS analysis c. Aad et al:: arxiv: 1405.6241
$-461 \mathrm{TeV}^{-4}<F_{S, 0}<527 \mathrm{TeV}^{-4}$
$-758 \mathrm{TeV}^{-4}<F_{S, 1}<791 \mathrm{TeV}^{-4}$
\Rightarrow CLIC values up to $15 \times(90 x)$ better

Actual values

Theoretical CLIC values

$$
\begin{aligned}
& -40 \mathrm{TeV}^{-4}<F_{S, 0,1}<40 \mathrm{TeV}^{-4}(1400 \mathrm{GeV}) \\
& -7 \mathrm{TeV}^{-4}<F_{S, 0,1}<7 \mathrm{TeV}^{-4}(3000 \mathrm{GeV})
\end{aligned}
$$

Latest ATLAS analysis 6 . Aad et al.: artiv: 1405.6241

$$
\begin{aligned}
& -461 \mathrm{TeV}^{-4}<F_{S, 0}<527 \mathrm{TeV}^{-4} \\
& -758 \mathrm{TeV}^{-4}<F_{S, 1}<791 \mathrm{TeV}^{-4}
\end{aligned}
$$

\Rightarrow CLIC values up to $15 \times(90 x)$ better
Max. photon induced bkg.: exclusion sensitivities worsen $\approx 15-20 \%$

Conclusion

- CLIC offers great possibilities for measuring anomalous gauge couplings.
- Exclusion sensitivities can be enhanced.
- Measurements are complementary to the LHC measurements.
- Especially BeamCal and LumiCal detectors important to reduce background.

Outlook

Relevant Operators:

- $\mathcal{L}_{S, 0}=F_{S, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}_{\nu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}^{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{S, 1}=F_{S, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}_{\nu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$

Figure: Scattering
of longitudi-
nal/transverse vector bosons.

Outlook

Relevant Operators:

- $\mathcal{L}_{S, 0}=F_{S, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}_{\nu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}^{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{S, 1}=F_{S, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}_{\nu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{M, 0}=-g^{2} F_{M, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\mathbf{W}_{\nu \rho} \mathbf{W}^{\nu \rho}\right]$
- $\mathcal{L}_{M, 1}=-g^{2} F_{M, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\rho} \mathbf{H}\right)\right] \operatorname{Tr}\left[\mathbf{W}_{\nu \rho} \mathbf{W}^{\nu \mu}\right]$

Figure: Scattering of longitudinal/transverse vector bosons.

Outlook

Relevant Operators:

- $\mathcal{L}_{S, 0}=F_{S, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}_{\nu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}^{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{S, 1}=F_{S, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}_{\nu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{M, 0}=-g^{2} F_{M, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\mathbf{W}_{\nu \rho} \mathbf{W}^{\nu \rho}\right]$
- $\mathcal{L}_{M, 1}=-g^{2} F_{M, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\rho} \mathbf{H}\right)\right] \operatorname{Tr}\left[\mathbf{W}_{\nu \rho} \mathbf{W}^{\nu \mu}\right]$
- $\mathcal{L}_{T, 0}=g^{4} F_{T, 0} \operatorname{Tr}\left[\mathbf{W}_{\mu \nu} \mathbf{W}^{\mu \nu}\right] \operatorname{Tr}\left[\mathbf{W}_{\alpha \beta} \mathbf{W}^{\alpha \beta}\right]$
- $\mathcal{L}_{T, 1}=g^{4} F_{T, 1} \operatorname{Tr}\left[\mathbf{W}_{\alpha \nu} \mathbf{W}^{\mu \beta}\right] \operatorname{Tr}\left[\mathbf{W}_{\mu \beta} \mathbf{W}^{\alpha \nu}\right]$
- $\mathcal{L}_{T, 2}=g^{4} F_{T, 2} \operatorname{Tr}\left[\mathbf{W}_{\alpha \mu} \mathbf{W}^{\mu \beta}\right] \operatorname{Tr}\left[\mathbf{W}_{\beta \nu} \mathbf{W}^{\nu \alpha}\right]$

Figure: Scattering of longitudinal/transverse vector bosons.

Outlook

Relevant Operators:

Figure: Scattering of longitudinal/transverse vector bosons.

- $\mathcal{L}_{S, 0}=F_{S, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}_{\nu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}^{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{S, 1}=F_{S, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\left(\mathbf{D}_{\nu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\nu} \mathbf{H}\right)\right]$
- $\mathcal{L}_{M, 0}=-g^{2} F_{M, 0} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\mu} \mathbf{H}\right)\right] \operatorname{Tr}\left[\mathbf{W}_{\nu \rho} \mathbf{W}^{\nu \rho}\right]$
- $\mathcal{L}_{M, 1}=-g^{2} F_{M, 1} \operatorname{Tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger}\left(\mathbf{D}^{\rho} \mathbf{H}\right)\right] \operatorname{Tr}\left[\mathbf{W}_{\nu \rho} \mathbf{W}^{\nu \mu}\right]$
- $\mathcal{L}_{T, 0}=g^{4} F_{T, 0} \operatorname{Tr}\left[\mathbf{W}_{\mu \nu} \mathbf{W}^{\mu \nu}\right] \operatorname{Tr}\left[\mathbf{W}_{\alpha \beta} \mathbf{W}^{\alpha \beta}\right]$
- $\mathcal{L}_{T, 1}=g^{4} F_{T, 1} \operatorname{Tr}\left[\mathbf{W}_{\alpha \nu} \mathbf{W}^{\mu \beta}\right] \operatorname{Tr}\left[\mathbf{W}_{\mu \beta} \mathbf{W}^{\alpha \nu}\right]$
- $\mathcal{L}_{T, 2}=g^{4} F_{T, 2} \operatorname{Tr}\left[\mathbf{W}_{\alpha \mu} \mathbf{W}^{\mu \beta}\right] \operatorname{Tr}\left[\mathbf{W}_{\beta \nu} \mathbf{W}^{\nu \alpha}\right]$

Unitarization done, now: Implementation in WHIZARD.

Backup Slides

BACKUP SLIDES

Vector boson scattering

Figure: Feynman diagrams for elastic vector boson scattering with four-point-interaction or a vector boson propagator.

Vector boson scattering

Figure: Feynman diagrams for elastic vector boson scattering with four-point-interaction or a vector boson propagator.

Figure: Feynman diagrams for elastic vector boson scattering with a Higgs propagator.

Differential cross sections

Figure: Differential cross section depending on the W boson pair recoil mass at $\sqrt{s}=3000 \mathrm{GeV}$.

Differential cross sections

Figure: Differential cross sections depending on the invariant mass of the W boson pair at $\sqrt{s}=3000 \mathrm{GeV}$.

Cross sections at 1400 GeV

Figure: Total cross sections of $e^{+} e^{-} \rightarrow Z Z \nu \bar{\nu}$ depending on $F_{S, 0}$ and $F_{S, 1}$ at $\sqrt{s}=1400 \mathrm{GeV}$ without unitarization.

Cross sections at 3000 GeV

Figure: Total cross sections of $e^{+} e^{-} \rightarrow W^{+} W^{-} \nu \bar{\nu}$ depending on $F_{S, 0}$ and $F_{S, 1}$ at $\sqrt{s}=3000 \mathrm{GeV}$ with unitarization.

Cross sections at 3000 GeV

Figure: Total cross sections of $e^{+} e^{-} \rightarrow Z Z \nu \bar{\nu}$ depending on $F_{S, 0}$ and $F_{S, 1}$ at $\sqrt{s}=3000 \mathrm{GeV}$ with unitarization.

