Right-handed currents and doubly charged Higgs bosons

Proposal for the Report on Physics at 100 TeV

Janusz Gluza (Silesia U.)

In collaboration with:

G. Bambhaniya (Ahmedabad, Phys. Res. Lab)
J. Chakrabortty, T. Srivastava (Indian Inst. Tech., Kanpur)
T. Jeliński, M. Kordiaczyńska (Silesia U.)
R. Szafron (Alberta U.)

CERN, 28.10.2015, Vidyo transmission

FCC-hh BSM group informal meeting, indico

Studies including FCC-hh:

- G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jeliński and R. Szafron, "Search for doubly charged Higgs bosons through VBF at the LHC and beyond," e-Print: arXiv:1504.03999, to appear in PRD.
- G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jeliński and M. Kordiaczyńska, "Lowest limits on the doubly charged Higgs boson masses in the minimal left-right symmetric model,"
 - e-Print: arXiv:1408.0774, Phys. Rev. D **90** (2014) 9, 095003

Related studies:

- G. Bambhaniya, J. Chakrabortty, J. Gluza, M. Kordiaczyńska and R. Szafron, "Left-Right Symmetry and the Charged Higgs Bosons at the LHC," e-Print: arXiv:1311.4144, JHEP 1405 (2014) 033
- J. Chakrabortty, J. Gluza, R. Sevillano, R. Szafron, "Left-Right Symmetry at LHC and Precise 1-Loop Low Energy Data" e-Print: arXiv:1204.0736, JHEP 1207 (2012) 038.
- J. Chakrabortty, P. Konar, T. Mondal, "Constraining a class of B-L extended models from vacuum stability and perturbativity"
 - e-Print: arXiv:1308.1291, Phys.Rev. D89 (2014) 056014.

Higgs sector consists of two triplets and one bidoublet

$$\Delta_{L,R} = \begin{pmatrix} \delta_{L,R}^{+}/\sqrt{2} & \delta_{L,R}^{++} \\ \delta_{L,R}^{0} & -\delta_{L,R}^{+}/\sqrt{2} \end{pmatrix},$$

$$\Phi = \begin{pmatrix} \phi_{1}^{0} & \phi_{1}^{+} \\ \phi_{2}^{-} & \phi_{2}^{0} \end{pmatrix}.$$

with vacuum expectation values allowed for the neutral particles

$$\begin{array}{rcl} \frac{v_L}{\sqrt{2}} &=& \langle \delta_L^0 \rangle, \\ \\ \text{new HE scale} : & \frac{v_R}{\sqrt{2}} &=& \langle \delta_R^0 \rangle, \\ \\ && \text{SM VEV scale} : \sqrt{\kappa_1^2 + \kappa_2^2} \\ \\ \frac{\kappa_1}{\sqrt{2}} &=& \langle \phi_1^0 \rangle, \\ \\ \frac{\kappa_2}{\sqrt{2}} &=& \langle \phi_2^0 \rangle. \end{array}$$

Physical scalars

- 4 neutral scalars: H_0^0 , H_1^0 , H_2^0 , H_3^0 , (the first can be considered to be the light Higgs of the SM),
- \clubsuit 2 neutral pseudo-scalars: A_1^0, A_2^0 ,
- 2 charged scalars: H_1^{\pm}, H_2^{\pm} ,
- 2 doubly-charged scalars: $H_1^{\pm\pm}, H_2^{\pm\pm}$.

Primary production	Secondary production	Signal
I. $H_1^+ H_1^-$	$\ell^+\ell^- u_L u_L$	$\ell^+\ell^- \oplus MET$
_	$\ell^+\ell^-\nu_R\nu_R$	depends on $ u_R$ decay modes
_	$\ell^+\ell^- u_L u_R$	depends on $ u_R$ decay modes
II. $H_2^+ H_2^-$	$\ell^+\ell^- u_L u_L$	$\ell^+\ell^- \oplus MET$
_	$\ell^+\ell^-\nu_B\nu_B$	depends on $ u_R$ decay modes
_	$\ell^+\ell^- u_L u_R$	depends on $ u_R$ decay modes
III. $H_1^{++}H_1^{}$	-	$\ell^+\ell^+\ell^-\ell^-$
_	$H_1^+ H_1^+ H_1^- H_1^-$	See I
_	$H_1^{\pm}H_1^{\pm}H_2^{\mp}H_2^{\mp}$	See I & II
_	$H_2^+ H_2^+ H_2^- H_2^-$	See II
_	$W_{i}^{+}W_{i}^{+}W_{j}^{-}W_{j}^{-}$	depends on W 's decay modes
IV. $H_2^{++}H_2^{}$	_	$\ell^+\ell^+\ell^-\ell^-$
_	$H_2^+ H_2^+ H_2^- H_2^-$	See II
_	$H_1^{\pm}H_1^{\pm}H_2^{\mp}H_2^{\mp}$	See I & II
_	$H_1^+ H_1^+ H_1^- H_1^-$	See I
_	$W_i^+W_i^+W_j^-W_j^-$	depends on W 's decay modes
$V. H_1^{\pm \pm} H_1^{\mp}$	_	$l^{\pm}l^{\pm}l^{\mp}_{} u_{L}$
VI. $H_2^{\pm\pm}H_2^{\mp}$	-	$l^{\pm}l^{\pm}l^{\mp} u_L$
VII. $H_1^{\pm}Z_i, H_1^{\pm}W_i$	_	See I & Z_i, W_i decay modes
VIII. $H_2^{\pm}Z_i, H_1^{\pm}W_i$	_	See II & Z_i, W_i decay modes
IX. $H_1^{\pm}A$	_	See I
$X. H_2^{\pm}A$	_	See II

Branching ratios

(i)
$$H_1^{\pm\pm} \to l^{\pm}l^{\pm}$$
, where $l = e, \mu, \tau$;

(ii)
$$H_1^{\pm\pm} \to H_1^{\pm} W_1^{\pm}$$
;

(iii)
$$H_2^{\pm\pm} \to l^{\pm}l^{\pm}$$
, where $l = e, \mu, \tau$;

(iv)
$$H_2^{\pm\pm} \to H_2^{\pm} W_2^{\pm}$$
;

(v)
$$H_2^{\pm\pm} \to W_2^{\pm} W_2^{\pm};$$

(vi)
$$H_2^{\pm\pm} \to H_2^{\pm} W_1^{\pm};$$

In principle we can have both LNV and LFV,

$$BR(H_{1/2}^{\pm\pm} \to e^{\pm}e^{\pm}) = 37.9\%$$

 $BR(H_{1/2}^{\pm\pm} \to \mu^{\pm}\mu^{\pm}) = 37.9\%$
 $BR(H_{1/2}^{\pm\pm} \to \tau^{\pm}\tau^{\pm}) = 24.2\%.$

Should be updated!

Doubly charged Higgses production (Drell-Yan)

$$m_{H_{1,2}^{\pm\pm}} = 600 \text{ GeV}:$$

$$\sigma(pp \to H_{1,2}^{++}H_{1,2}^{--} \to l_i^+l_i^+l_j^-l_j^-) = 0.144(0.9498) \ fb \ \text{for} \ \sqrt{s} = 8(14) \ \text{TeV}.$$

Kinematic cuts for H^{++} studies [used for LHC!]

- The Parton Distribution Function (PDF) CTEQ6L1
- lacktriangle Initially to select a lepton, CALCHEP, PYTHIA, $|\eta| < 2.5$ and $p_T > 10$ GeV
- Detector efficiency cut for leptons is as follows:
 - \diamondsuit For electron (either e^- or e^+) detector efficiency is 0.7 (70%);
 - \diamondsuit For muon (either μ^- or μ^+) detector efficiency is 0.9 (90%).
- \diamond Smearing of electron energy and muon p_T are done
- lacktriangle Lepton-lepton separation. $\Delta R_{ll} \geq 0.2$
- lacktriangle Lepton-photon separation cut is also applied: $\Delta R_{l\gamma} \geq 0.2$ with all the photons having $p_{T\gamma} > 10$ GeV;
- Lepton-jet separation: The separation of a lepton with all the jets should be $R_{lj} \geq 0.4$, otherwise that lepton is not counted as lepton. Jets are constructed from hadrons using PYCELL within the PYTHIA.
- * Hadronic activity cut. This cut is applied to take only pure kind of leptons that have very less hadronic activity around them. Each lepton should have hadronic activity, $\frac{\sum p_{T_{hadron}}}{p_{T_{l}}} \leq 0.2$ within the cone of radius 0.2 around the lepton.
- $\Leftrightarrow \mbox{ Hard } p_T \mbox{ cuts: } p_{Tl_1} > 30 \mbox{ GeV, } p_{Tl_2} > 30 \mbox{ GeV, } p_{Tl_3} > 20 \mbox{ GeV, } p_{Tl_4} > 20 \mbox{ GeV.}$
- * Missing p_T cut. Since 4-lepton final state is without missing p_T , missing p_T cut is not applied while for 3-lepton final state there is a missing neutrino, so missing p_T cut ($p_T > 30$ GeV) is applied.
- Z-veto is also applied to suppress the SM background. This has larger impact while reducing the background for four-lepton without missing energy.

Doubly charged Higgs bosons production (Vector Boson Fusion with 2 jets)

- ullet Left: 1 TeV doubly charged scalar can be probed with a significance of 5 only with 100 the TeV collider with luminosity at least 1000 ${
 m fb}^{-1}$
- Right: significance at the level of 7 can be reached for $M_{H^{\pm\pm}}=1\,\mathrm{TeV}$ and $\sqrt{s}=100\,\mathrm{TeV}$ with integrated luminosities around 3000 fb^{-1} .

Summary

- Discovery of doubly charged Higgs particles would be something incredibly new and would define new directions in physics (e.g. issue of supersymmetry)
- FCC-hh opens up a very wide range of Higgs boson masses which can be explored.

Plans for a report:

- ightharpoonup Completing significance studies for $\sigma(pp ou H_{1,2}^{++} H_{1,2}^{--} ou l_i^+ l_i^+ l_j^- l_j^-)$ at 100 TeV, taking into account MODEL's CONSISTENCY (RGE, stability, unitarity, FCNC,...)
- → Delivering mass spectrum benchmarks

BACKUP SLIDES

Phenomenology: approximations, estimations, simplifications,...

For obvious reasons, usually we are forced to simplify our approaches theory \rightarrow phenomenology (supersymmetry,...)

This seems to be fine, especially when considering very heavy NP particles

$$m_i(H, N, W', Z', ...) >> E_{\text{process}}$$

For FCC, situation much realeased! Still, there are strong relations among scalar masses which should be taken into account.

New Physics and radiative corrections

Not always - depending on renormalization strategy - radiative corrections connected with the SM particles inside complete NP model are the same as in the SM itself.

E.g. $\Delta \rho$ correction in muon decay decay width, and top quark (also scalars!):

$$(\Delta \rho)_{SM} \simeq \frac{m_t^2}{M_W^2}$$
$$(\Delta \rho)_{LRM} \simeq \frac{m_t^2}{M_{W_2}^2 - M_{W_1}^2}$$

M. Czakon, JG, F. Jegerlehner, M. Zralek, hep-ph/9909242

Present example - scalar physics.

We try to care on MODELS CONSISTENCY - important for FCC predictions

Constraints, dependences: theory and experiment

Naturally, $m_H^{\pm,0} \propto v_R$.

 $\ \, \mathbf{ } \ \, 124.7 \,\, \mathrm{GeV} < M_{H_0^0} < 126.2 \,\, \mathrm{GeV}$

$$\begin{split} M_{H_0^0}^2 &\simeq & 2\kappa_+^2\lambda_1 - \frac{\alpha_1^2}{2\rho_1}, \\ M_{H_1^0}^2(FCNC) &\simeq & \frac{1}{2}\alpha_3v_R^2 & FCNC > 10 \text{ TeV}, \\ M_{H_2^0}^2 &\simeq & 2\rho_1v_R^2 & \\ M_{H_1^\pm}^2(LHC) &= & \frac{1}{2}v_R^2\delta\rho + \frac{1}{4}\alpha_3\kappa_+^2, & (\delta\rho = \rho_3 - 2\rho_1) \\ M_{H_1^\pm}^2(LHC) &= & \frac{1}{2}\left[v_R^2\delta\rho + \alpha_3\kappa_+^2\right], \\ M_{H_2^\pm}^2(LHC) &= & 2\rho_2v_R^2 + \frac{1}{2}\alpha_3\kappa_+^2. & LHC < 1 \text{ TeV} \end{split}$$

$$\begin{split} & \frac{\text{masses (in GeV)}}{M_{H_0^0}} = 125, \\ & M_{H_1^0} = 10431, \quad M_{H_2^0} = 27011, \quad M_{H_3^0} = 384 \\ & M_{A_1^0} = 10437, \quad M_{A_2^0} = 384 \\ & M_{H_1^\pm} = 446, \quad M_{H_2^\pm} = 10433 \\ & M_{H_1^{\pm\pm}} = 500, \quad M_{H_2^{\pm\pm}} = 500 \end{split}$$

$\frac{\text{parameters}}{\lambda_1 = 0.13, \quad \lambda_3 = 1}$ $\alpha_3 = 3.4$

 $\rho_1 = 5.7, \quad \rho_2 = 1.15 \times 10^{-3}, \quad \rho_3 = 11.40$

Conclusions:

- only region <u>below</u> the red dotted line is allowed. That line corresponds to the the stability condition.
- $\bigstar \ M_{H_1^{\pm\pm}} M_{H_1^\pm} < M_{W_1^\pm} \text{, hence on-shell } H_1^{\pm\pm} \text{ cannot decay to } H_1^\pm \text{ and } W_1^\pm$