Higgs Chapter of the report on Physics at 100 TeV: the "SM Higgs" section

Editors: M.L. Mangano, G.Zanderighi, H.Gray + several subsection editors and contributors

- Document rates and distributions for a broad range of Higgs production channels, at 100 TeV
 - Show results in terms of acceptances (e.g. w.r.t. p_T , η), to be used as reference for detector design
 - Consider rare production modes like multi-H production and associated production with multiple SM objects (VVH, etc)
- Study both inclusive production, and production in kinematical configurations at large Q^2 , up to where rates reach the $O(1 \text{ event/ab}^{-1})$
- Discuss reliability of current theoretical modeling (e.g. $m_{top} = \infty$ approximation of ggH channels vs exact results with finite m_{top})
- "Phenomenology":
 - Discuss opportunities for precision measurements in the % range, and provide benchmarks for the performance of FCC-hh detectors
 - Discuss opportunities for measurements of rare decay modes
- Phenomenology studies driven **so far** mostly by considerations of statistics, SM physics bgs, basic detector properties such as p_T , η acceptance, mass resolution, Typically at parton level. Main goal is to **quickly** identify interesting channels/ observables, where more detailed detector/DELPHES-level studies can be done.

Draft outline

(each topic below is a "guaranteed deliverable": some material is already available, and contributors/sub-editors exist for the various topics)

• ggH

- inclusive, p_T spectrum at small p_T and at very large p_T , far off-shell production
- H+multijets
- phenomenology (e.g. BR ratios at %-level, width determination from far off-shell production, etc)

• V+H

- inclusive rates, spectra vs p_T and m(VH)
- phenomenology (e.g. $B(H \rightarrow bb)/B(H \rightarrow \gamma\gamma)$, reach at very large m(VH), ...)

VBF

- inclusive production, VBF plus jets
- jet eta spectra, jet pt spectra at large eta, detector design implications, review issue of what's the best VBF selection criterion: select leading pt jets, or most fwd jets? shower effects and systematics

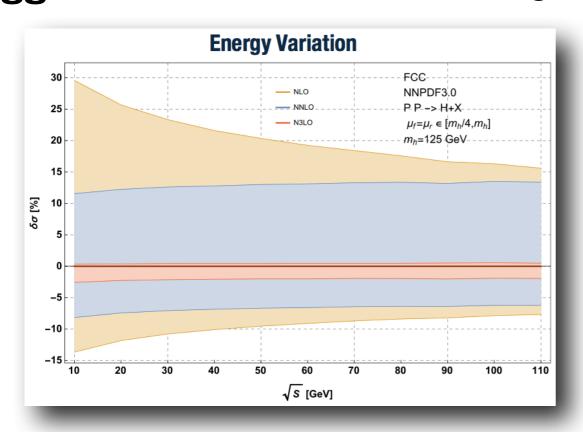
• ttH

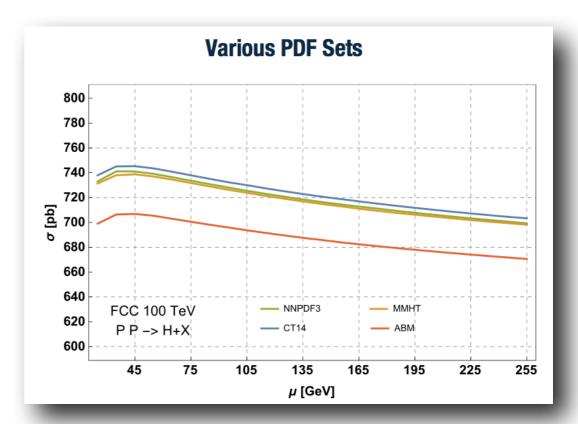
- rates, pt spectra, prospects for determination of SM ttH coupling (from arXiv:1507.08169)
- **HH** (here pheno will go in the Section edited by G.Panico)
 - gg channel: total XS, m(HH) spectra. Study mtop=infty vs mtop=173, at LO and approx-NLO at large mHH
 - VBF channel: total XS, jet spectra (eta_max, pt of most fwd jet, ...), rates at large m(HH)
 - other channels (eg ttHH,VHH, ...): document rates, discuss why should they be interesting
- Other rare production modes (here pheno could go in the Section edited by G.Panico)
 - "multiple heavy objects" (e.g. prod with multiple gauge bosons)
 - production of more than 2 Higgs bosons:
 - rates, and document existing studies of detectability at 100 tev
- Rare Higgs decays (1st generation, exclusive decays)

Additional relevant material will appear also in the "SM at 100 TeV" Chapter

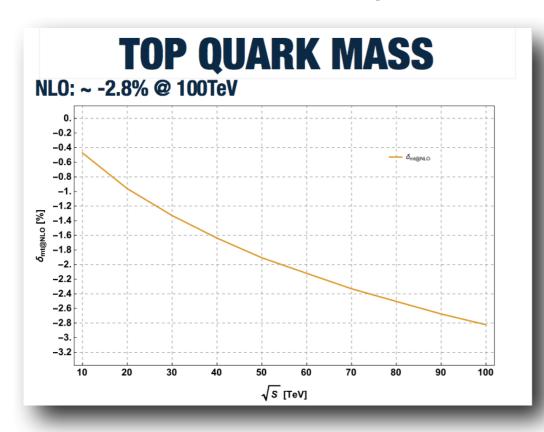
• Inclusive diboson production

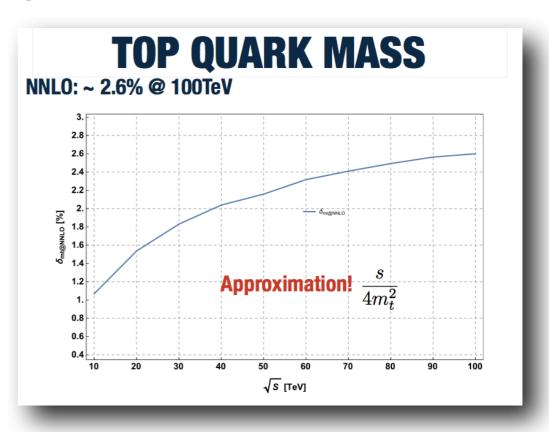
- VV and V gamma production
- diboson+jets
- Anomalous couplings
- gamma gamma production
 - high mass
 - m(gamma gamma) ~ mH, at various pt ranges (inclusive, large pt)
- EW corrections


VBF production of gauge bosons and VB scattering


- W/Z production
- pairs (OS, SS): inclusive production, high mVV production
- Define VBF cuts, characterize in terms of fwd jet spectra (eta, pt)
 - these may differ for single and double VB production
 - acceptance vs leptonic decay products (etamax, ptmin)
- EW corrections

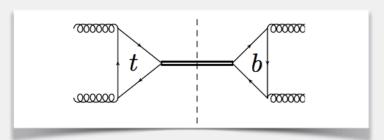
Overview of candidate material


(more is available, this is just a partial sample)


(where indicated, material was shown at the "SM@100 TeV" Workshop, Oct 7-9, more details to be found there: http://indico.cern.ch/event/437912/other-view?view=standard)

⇒ Scale and PDF systematics stable over range 14 - 100 TeV

⇒ Finite mass effect grow with E, but strong cancellation in NLO+aNNLO persists


gg→H inclusive

Bottom/Charm Quarks: Large negative effect at LO

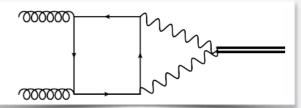
Included up to full NLO: ~-6%

Also benefit from full NNLO!

Uncertainty: ~1.5 %

ELECTRO-WEAK

Energy independent EWK corrections


$$\sigma = \sigma_{QCD} \times (1 + \delta_{EWK})$$
 + ~5 %

 $\mathcal{O}(lphalpha_S)$ Approximation

Residual Error Large!

 $<\sim 5\%$

[Actis,Passarino,Sturm,Uccirati;Degrassi,Maltoni; Anastasiou,Boughezal,Petriello,....]

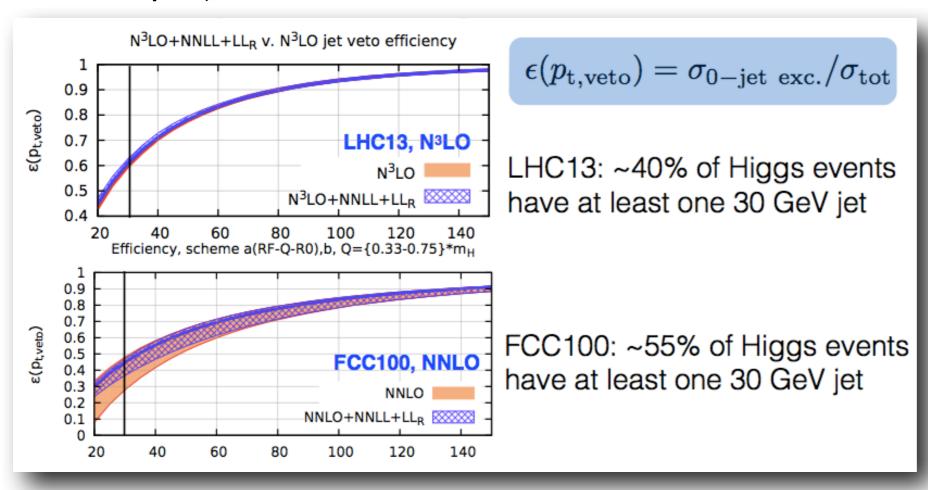
Corrections to H+J (Energy dependent)

[Keung,Petriello]

CONCLUSIONS

QCD Effective: N3L0

QCD Full: NLO+

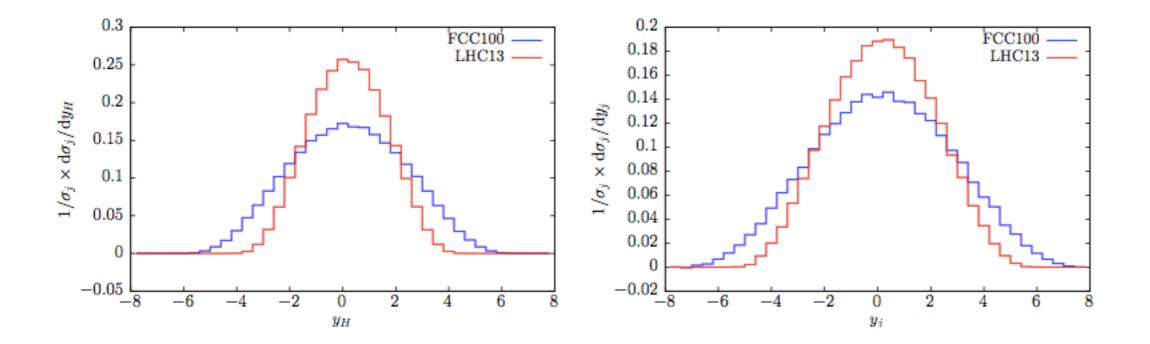

EWK: $\mathcal{O}(\alpha)$ +

We know a lot

XS increase by ~1600%

 $\sigma_{g\,g\to H+X} = 792.5 pb \pm 2\%\,QCD\,\pm 3\%\,EWK\,\pm 2\%\,t\,\pm 1\%\,b$

Small p_T, jet-veto issues


→ TH jet-veto systematics will be reduced with higherorder calculations, but mostly with direct measurement (e.g. H→ZZ*)

NB jet-vetoed rates grow less than σ_H^{tot} when 14→100 TeV !!

For a 30 GeV jet
$$\sigma^{\rm NN}_{0-j}(100~{\rm TeV})=335^{+40}_{-70}~{\rm [pb]}$$

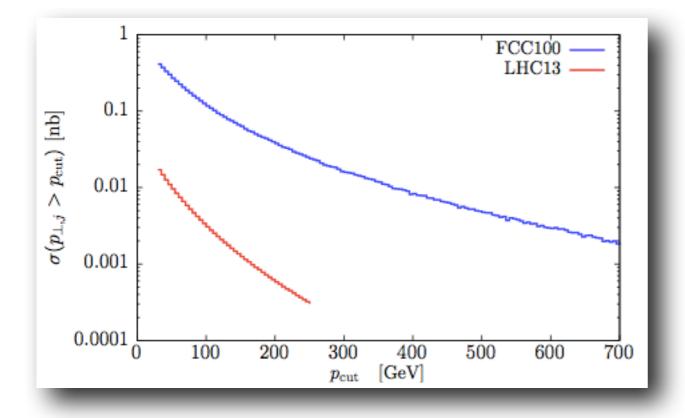
$$\sigma^{\rm N^3LO}_{0-j,{\rm f.o.}}(100~{\rm TeV})=330~{\rm [pb]}$$

$$\sigma^{\rm N^3}_{0-j}(13~{\rm TeV})=28^{+0.8}_{-1.1}~{\rm [pb]}$$
 x10 enhancement

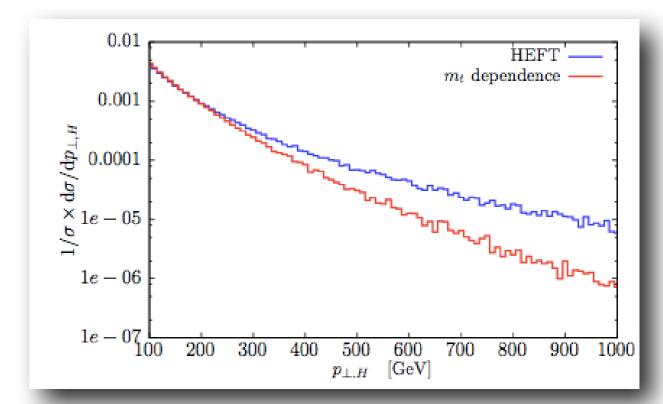
Caola SM@100 TeV

Inclusive acceptance aspects

NB jet-vetoed rates grow less than σ_H^{tot} when 14→100 TeV!!


For a 30 GeV jet $\sigma_{0-j}^{\rm NN}(100~{\rm TeV})=335^{+40}_{-70}~{\rm [pb]}$ $\sigma_{0-j,{\rm f.o.}}^{\rm N^3LO}(100~{\rm TeV})=330~{\rm [pb]}$ $\sigma_{0-j,{\rm f.o.}}^{\rm N^3}(13~{\rm TeV})=28^{+0.8}_{-1.1}~{\rm [pb]}$ x10 enhancement

→ TH jet-veto
systematics will be
reduced with higherorder calculations, but


ostly with direct easurement (e.g.

 \rightarrow ZZ*)

Production at high pt

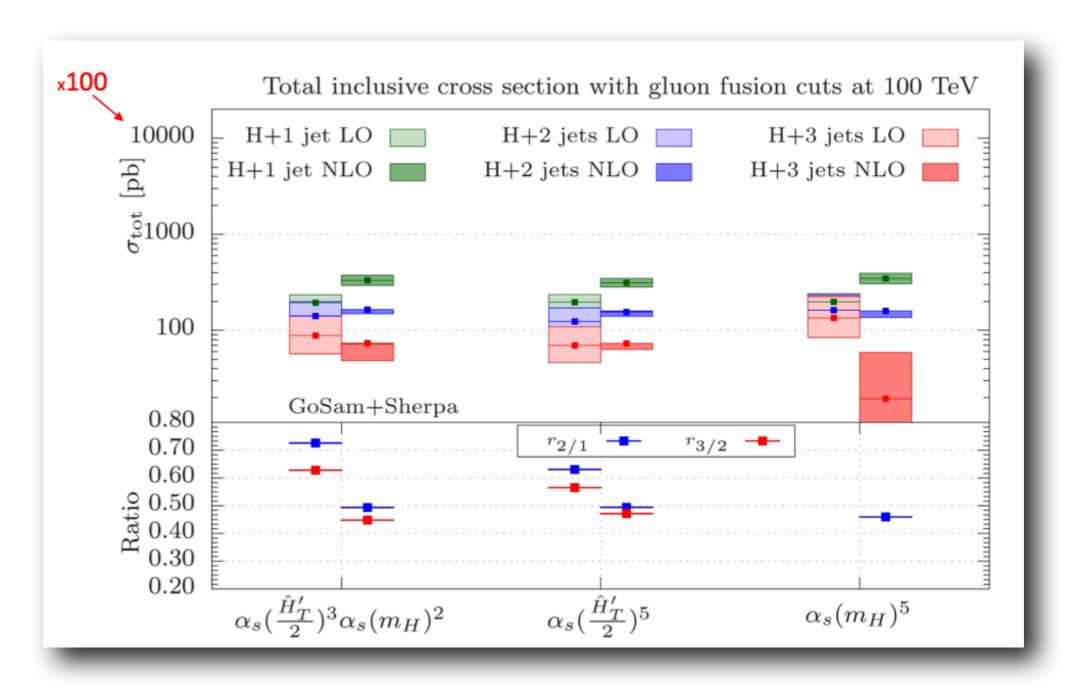
Relevance of exact m_{top} effects

High-pt H for BR ratios measurements

I pb rate (i.e. 10^7 events) with $p_T(H) > I \text{ TeV}$

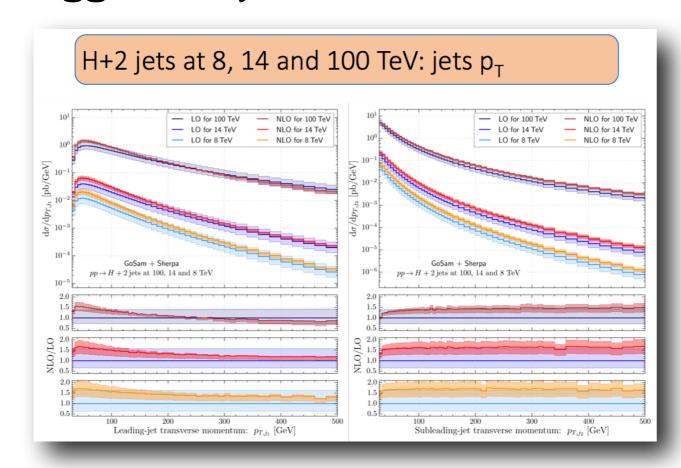
MLM, Goertz

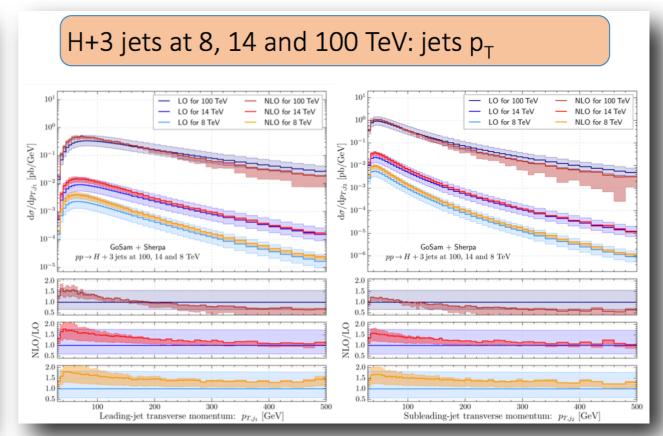
Exploit:

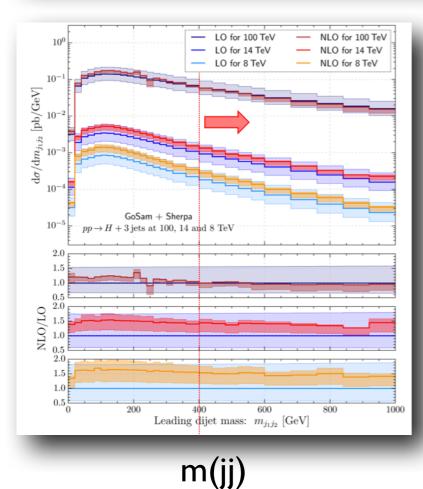

- Improved S/B for many final states at large p_T
- Reduced TH and exp systematics?
- More robust measurement/modeling of BR ratios between different channels, eg:

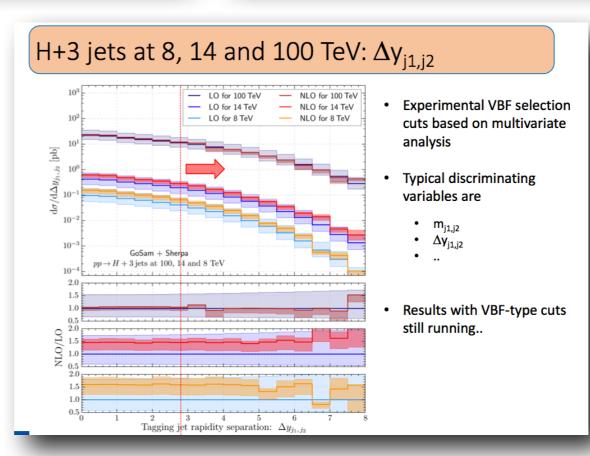
+
$$B(H \rightarrow \mu \mu)/B(H \rightarrow \gamma \gamma)$$
, $B(H \rightarrow \tau \tau)/B(H \rightarrow \gamma \gamma)$, $B(H \rightarrow WW)/B(H \rightarrow \gamma \gamma)$, $B(H \rightarrow Z\gamma)/B(H \rightarrow \gamma \gamma)$

Example: $H \rightarrow \mu\mu$ statistical precision vs $p_T^{min}(\mu)$ vs $\Delta m_{\mu\mu}$ resolution (Bkg=off-shell DY)


$\sqrt{\text{B/S}}$ for 10ab^{-1}		pt H min					LO only, no K factors
		30	50	100	150	200	
pt mu min	20.00	0.141E-01	0.160E-01	0.185E-01	0.197E-01	0.206E-01	
	30.00	0.149E-01	0.170E-01	0.193E-01	0.201E-01	0.209E-01	
	40.00	0.165E-01	0.185E-01	0.201E-01	0.206E-01	0.212E-01	^ - + 2 F C \/
	50.00	0.194E-01	0.204E-01	0.209E-01	0.213E-01	0.218E-01	$\Delta m_{\mu\mu} = \pm 2.5 \text{ GeV}$
	75.00	0.235E-01	0.235E-01	0.234E-01	0.232E-01	0.233E-01	
	100.00	0.254E-01	0.254E-01	0.254E-01	0.254E-01	0.252E-01	
$\sqrt{\rm B/S}$ for $10\rm ab^{-1}$		pt H min					
pt mu min	20.00	0.902E-02	2 0.102E-01	0.119E-01	0.128E-01	0.135E-01	
	30.00	0.953E-02	2 0.109E-01	0.124E-01	0.130E-01	0.137E-01	
	40.00	0.105E-01	0.119E-01	0.129E-01	0.134E-01	0.139E-01	$\Delta m_{\mu\mu} = \pm I \text{ GeV}$
	50.00	0.124E-01	0.131E-01	0.135E-01	0.139E-01	0.143E-01	—
	75.00	0.153E-01	0.153E-01	0.153E-01	0.152E-01	0.153E-01	
	100.00	0.168E-01	0.168E-01	0.168E-01	0.168E-01	0.167E-01	


NB: NLO H+2,3 jets with $m_{top} = \infty$




gg→H + jets

Luisoni SM@100 TeV

studies
dedicated to
VBF-like
topologies
are ongoing

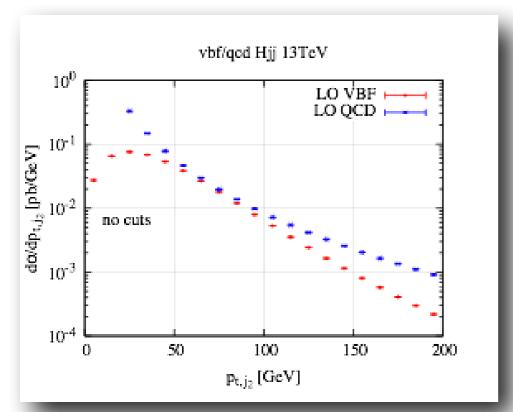
100 TeV cross sections

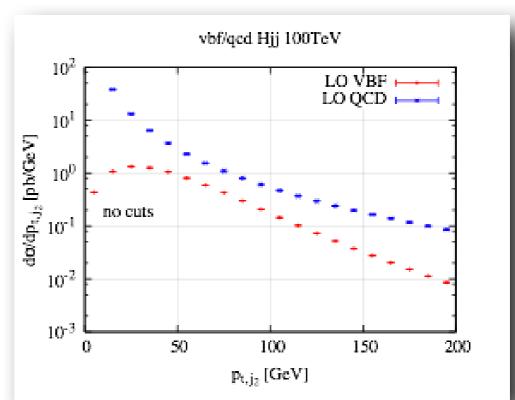
	σ ^(incl) [pb]	δ%	σ ^(VBF) [pb]	δ%
LO	79.86	-	7.03	-
NLO	75.58	-5.4	6.30	-10
NNLO	72.81	-3.7	5.98	-5.1
NLO+PS	75.58	-	5.88	-6.7

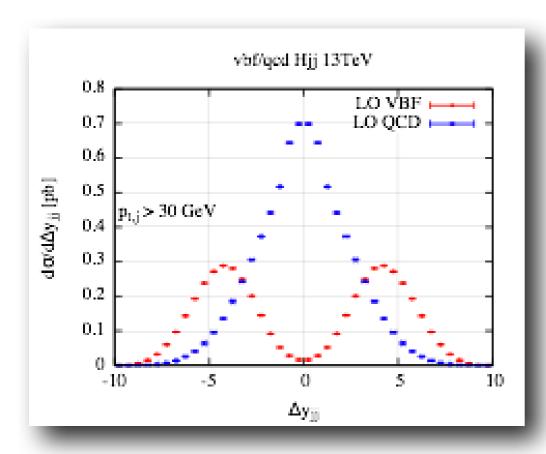
VBF cuts $(p_{t,j} > 30 \text{ GeV})$

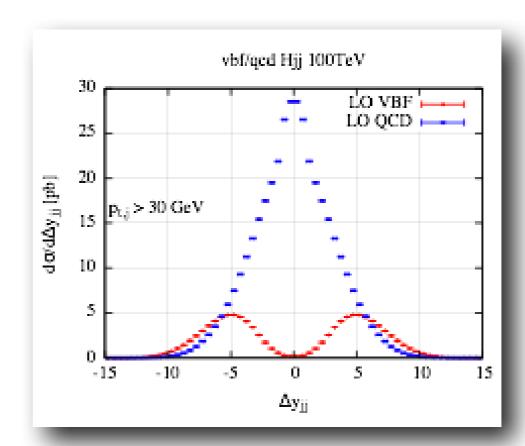
VBF

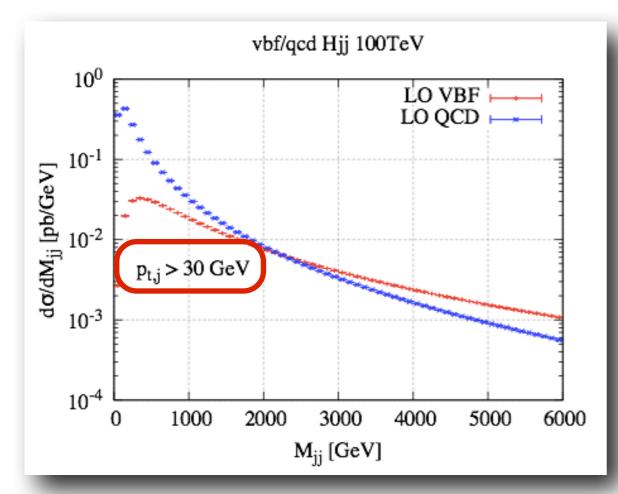
 $|\Delta y_{jj}| > 6.5,$ $y_{j_1} \cdot y_{j_2} < 0$ $M_{jj} > 1600 \text{ GeV},$ $\frac{\pi}{4} < \phi_{jj} < \frac{3\pi}{4}$

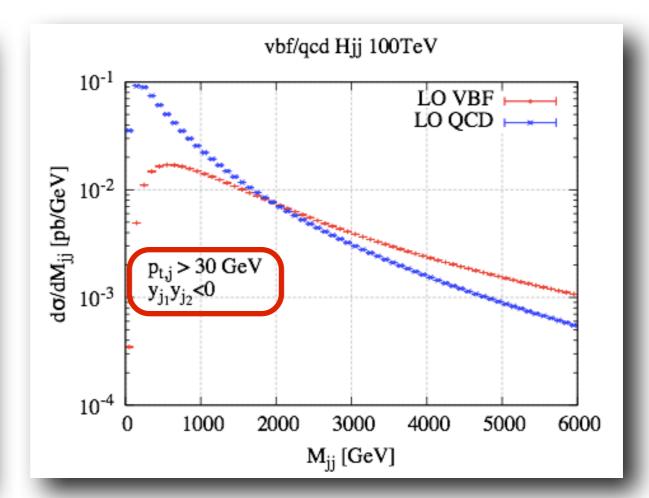

$$\sigma_{100~TeV}^{(incl)}/\sigma_{13~TeV}^{(incl)}\sim 17$$
 $\sigma_{100~TeV}^{(VBF)}/\sigma_{13~TeV}^{(VBF)}\sim 7$

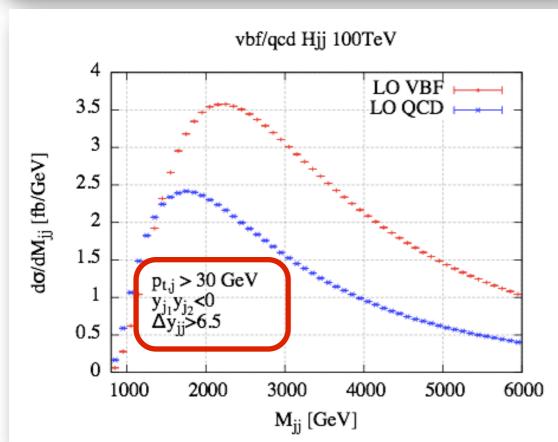

VBF

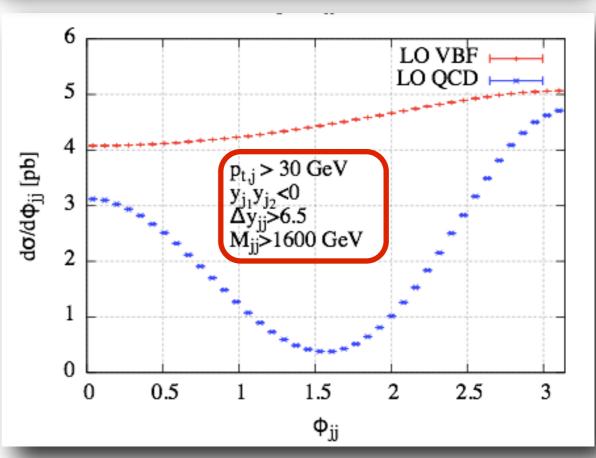

Karlberg SM@100 TeV


13 TeV









Karlberg SM@100 TeV

VB scattering

Salfelder SM@100 TeV

VBS - current Status

- NLO QCD Corrections to EW_VVjj
 - \rightarrow VBFNLO

[Bozzi, Jäger, Oleari, Zeppenfeld '06 - '09]

NLO QCD Corrections to EW₋W[±]W[±]jj

[Denner, Hošeková, Kallweit '12]

NLO QCD Corrections to QCD₋W⁺W[±]jj (on-shell W's)

[Melia, Melnikov, Rontsch, Zanderighi '10, '11]

NLO QCD Corrections to QCD_W+W±jj (DR contrib.)

[Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano '12]

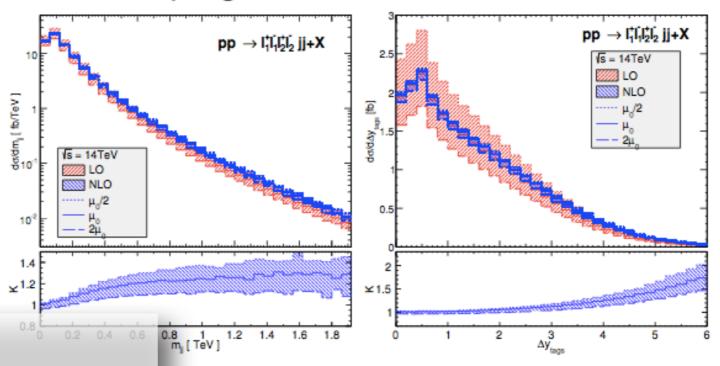
- NLO QCD Corrections to QCD_VVjj (not W+W-jj)
 - \rightarrow VBFNLO

[Campanario, Kerner, Ninh, Zeppenfeld '13, '14]

- Implementations into the POWHEG-Box (NLO QCD+PS-Effects)
 - QCD_W+W+jj
 - EW₋W⁺W[±]jj and EW₋ZZjj

[Melia, Nason, Rontsch, Zanderighi '11]

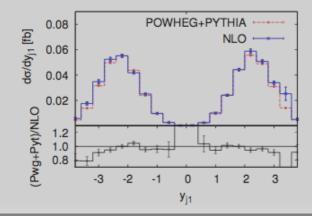
[Jäger, Karlberg, Zanderighi '11, '13]

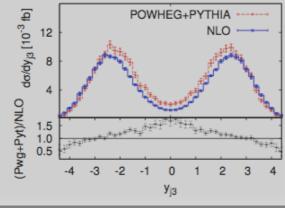

Evidence for EW₋W[±]W[±]jj at 8 TeV

[ATLAS & CMS collaborations '14]

VBS at next-to-leading order

NLO QCD:


- only consider leptonic decays of vector bosons
- available for EW- & QCD-induced channels
- corrections $\lesssim 5 10\% \rightarrow \text{small!}$ (both process classes)
- small scale dependence, especially with dynamical scale choice $(\mu_0 = Q)$
 - ⇒ EW-ind.: almost constant dynamical K-factors
 - ⇒ QCD-ind.: shapes get distorted



Parton-shower matching:

• influence on tagging jets small

· third jet shows more sensitivity on the parton shower

VB scattering

Salfelder SM@100 TeV

minimal cuts

- kT-algorithm (D=0.8) $p_{\rm T,jet} > 20 \, {\rm GeV}$
- $p_{T,l} > 20 \,\text{GeV}$ $|y_1| < 2.5$
- $\Delta R_{\rm lj} > 0.4$
- for processes with Z's: $\Delta R_{\rm ll} > 0.2$ $M_{\rm ll} > 15\,{\rm GeV}$

VBS-cuts

$14\,\mathrm{TeV}$

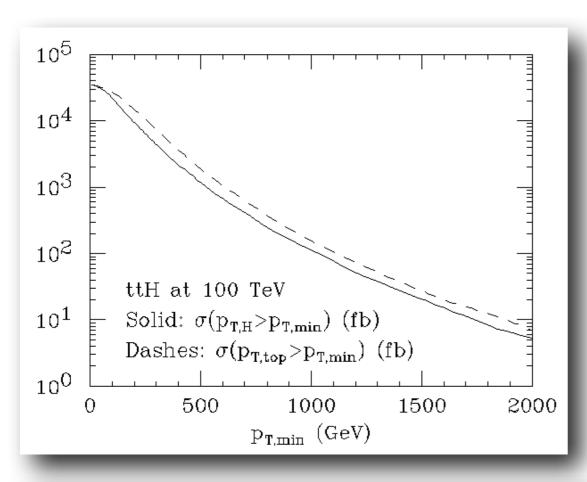
 $M_{\rm j1j2} > 600 \, {
m GeV}$ $\Delta y_{\rm j1j2} > 4$ $y_{\rm j_1} \times y_{\rm j_2} < 0$

$100\,\mathrm{TeV}$

 $M_{\rm j1j2} > 800 \, {
m GeV}$ $\Delta y_{\rm j1j2} > 5$ $y_{\rm j_1} \times y_{\rm j_2} < 0$

Results for VBS at 100 TeV

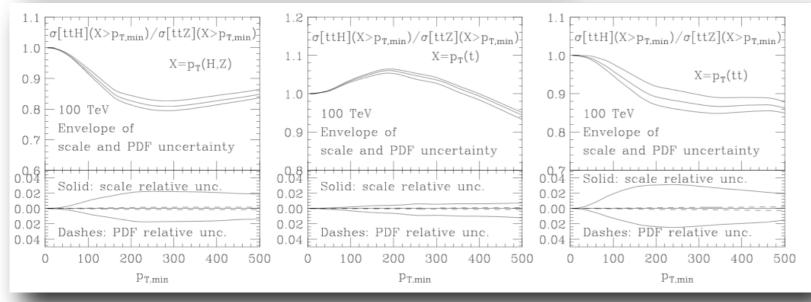
LO-XS		no \	/BS-cuts		with VBS-cuts		
		EW	QCD	S/B	EW QCD 3.109(2) - 1.2851(4) 0.06088(6) 0.1970(4) 0.5892(4) 0.0523(3) 0.0453(3)5 71.34(5) - 28.63(1) 0.221(5) 4.7812(2) 10.961(6)	QCD	S/B
	W ⁺ W ⁻ jj [fb]	7.272(4)	-	-	3.109(2)	-	-
14 TeV	W^+W^+jj [fb]	2.6577(3)	2.0969(4)	5/4	1.2851(4)	0.06088(6)	21/1
	W ⁺ Zjj [fb]	0.47311(6)	14.942(2)	1/31	0.1970(4)	0.5892(4)	1/3
	ZZjj [fb]	0.12513(3)	2.4666(3)	1/20	0.0523(3)	0.0453(3)5	7/6
100 TeV	W ⁺ W ⁻ jj [fb]	142.40(9)	-	-	71.34(5)	-	-
	W ⁺ W ⁺ jj [fb]	52.589(8)	17.225(6)	3/1	28.63(1)	0.221(5)	130/1
	W ⁺ Zjj [fb]	9.650(1)	273.06(5)	1/28	4.7812(2)	10.961(6)	4/9
	ZZjj [fb]	2.9198(8)	50.95(1)	3/50	1.454(1)	1.185(1)	5/4


- VBS-cuts reduce XS of EW-ind. to $\approx 50\%$
- much stronger reduction of QCD-ind. XS
- slight improvement wrt. VBS-cuts at 14 TeV
- even more stingent cuts possible due to high XS
- W⁺W⁺jj-measurement at $8\,\mathrm{TeV}$: EW-XS= 0.88fb (all channels), $^{S}\!/_{B}\approx ^{9}\!/_{1}$, 14 EW-events (34 total)

Work ongoing on VBS cuts optimization (e.g. optimize S/sqrt(B) @ 10ab⁻¹ rather than S/B)

ttH

• Rates for $tt \rightarrow lv + jets$, 20 ab^{-1}


		$H o 2\ell 2 u$	
$2.6\cdot 10^4$	$4.6\cdot 10^5$	$2.0 \cdot 10^6$	$1.2 \cdot 10^8$

H→bb channel studied in MLM, Plehn, Reimitz, Schell, Shao arXiv:1507.08169

Bottom line:

- Large rates
- Small TH systematics for ttH/ttZ
- Can exploit boosted topologies for H→bb
- 1% precision on y_{top} reasonable goal

