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EXOTIC HIGGS DECAYS 

higgs ➜ b’s

higgs ➜ gluons 

higgs ➜ gauge bosons (W’s 
and Z’s)

higgs ➜ taus 

higgs ➜ photons 

higgs ➜ ˠ Z 

light flavors (small)

SM allowed: Exotic Higgs: any channel which is 
disallowed or negligibly small in the SM.

Examples: 
higgs ➜ invisible (not necessarily neutrinos)

higgs ➜ 4 b (prompt or coming from displaced vertices — 
usually 2)

higgs ➜ 2 b’s and 2 taus (also prompt or coming from 
displaced vertices)

higgs ➜ many leptons (e.g. 4 or 6)

……….. 



DEVIATION FROM THE SM HIGGS 
COUPLINGS

hbb ̅

hgg

hVV (HWW and hZZ)

 hττ

hƔƔ

hƔZ 

ht t ̅

self-coupling

SM predicted couplings: 
How well can we measure each of these 
couplings and what do deviations tell us 

about the BSM?  

Ratios between the couplings can be measured 
more precisely than absolute values. What are the 

interesting ratios from the BSM point of view?

Particularly interesting and challenging couplings, 
which might be very informative about the new 

100 GeV sterile scalars coupling to the higgs



EXTENDED HIGGS SECTOR AND 
NEW EXOTIC HIGGSES
Can we produce new scalar particles which are also part of the 

non-minimal higgs sector.  What are (resonance) production 
rates? What are the decay modes? What is 100 TeV reach?  

Poster child — A0, H0 and H±

 Slightly less known — “radial mode” higgses in the twin Higgs 
scenario

New scalars which couple to the higgs but do not participate in EWSB 
(do not get VEV)



OVERVIEW OF THE BSM HIGGS 
THEORY

Why is this interesting? Can this compete with the direct 
searches for NP? 

Light particles in the higgs sector — hidden valleys. Possible motivations: neutral 
naturalness, (non-thermal) baryogenesis, “darkogenesis”… 

Generic signatures — exotic higgs decays. h ➝ light sector ➝ something 
Non generic, but often happens— deviation of the higgs from the SM couplings due to the 
extended higgs sector 
Sometimes happens — new higgs states (e.g. radial higgs mode)
Quite generic — not necessarily new heavy colored states (or might demand high 
luminosity) 

SUSY and 2HDM:
Generic signatures — new higgses and deviations from the SM higgs couplings. Unclear 
what will be easier to spot.

New scalars which couple to the higgs — EW baryogenesis and folded SUSY. 
Generic — deviation in hZZ rate @ ~ 1% level and in higgs self-coupling



“STANDARD” NATURALNESS 

SUSY and Partially composite higgs 

SUSY — type II 2HDM. Can be augmented with extra scalars 
(NMSSM, nMSSM…) or effective hard SUSY breaking. 

Non sign of deviations in the higgs sector until now — 2HDM 
in decoupling (or alignment) limit. What do we expect?

3

! operator automatically includes radiative corrections
to mh.
The deviation of rt from unity is parametrically small,

beginning at O(B2/M4
1 ). The deviation of rV scales sim-

ilarly. In contrast, the deviation of rb does not scale with
(B/M2

1 ). It can be parametrically O(1) provided that
either (i) λ7v2 ∼ m2

12 or (ii) λ35v2 ∼ m2
1.

The condition λ7v2 ∼ m2
12 implies that the hard and

soft breakings of the PQ are comparable at the scale of
SSB. Note that it is perfectly possible to have λ7v2 ∼ m2

12

and m2
12 ≪ m2

1. For instance, if the theory at some high
scale has m2

12 ∼ 0 but finite λ7, we can expect m2
12 ∼

λ7m2
1/(4π)

2 at scales below m1. In this case we can have
an O(1) correction to rb while the heavier doublet can be
very heavy, mH ∼ TeV. This shows that rb is a sensitive
probe for hard breaking of the PQ [14].
The second condition, λ35v2 ∼ m2

1, implies that a siz-
able part of the mass of H1 is driven by SSB. This is
the relevant condition for models in which hard breaking
of the PQ is absent or small (like e.g. the MSSM). In
this case, a discernible deviation of rb from unity implies
a light second doublet with mH ∼ v. The corrections
∼ (m2

h/M
2
1 ) coming from the derivative expansion can

then be relevant; note that these terms correct rb with a
definite positive sign. In the interesting case where soft
PQ breaking is also small, B ≪ m2

h, we can expand rb in
(B/M2

1 ). In that case, we can replace M2
1 → m2

H , valid
to O(B2/M4

1 ), in Eq. (8), obtaining

rb ≈
(

1−
m2

h

m2
H

)−1(

1−
λ35v2

m2
H

)

. (9)

Eq. (9) is correct to all orders in (m2
h/m

2
H) and

(λ35v2/m2
H) and to O(B2/M4

1 ).
Modifying the Higgs decay to bottom quarks affects

the other search channels by changing the total width.
A 125 GeV Higgs in the SM has BR(h → bb̄) ≈ 56% so,
for instance, the diphoton signal will be

σ ×BR(h → γγ)

σ ×BR(h → γγ)SM
∼=

1

1 + 0.56 (r2b − 1)
. (10)

The effect on the ZZ,WW final states is similar. In
Fig. 1 we plot the diphoton enhancement from Eqs. (9)-
(10). The maximal enhancement is about a factor of
two and is obtained for m2

H = m2
h + λ35v2. This means

that, in the context of a 2HDM with an approximate PQ
and for order one couplings λ35 ∼ 1, taking the recent
best fit ATLAS and CMS results [3, 4] at face value im-
plies a light second doublet mH ∼ 300 GeV. Note that
in Eq. (10) we neglected the charged Higgs loop contri-
bution to the coupling hγγ. In the appendix we show
that this contribution is indeed negligible for the range
of mH± that is consistent with b → Xsγ.
Finally, using Eqs. (8) we give a quick prescription for

computing the correction to rb in models with a type-II
2HDM at low energies.

λ35

m
H [G

eV
]
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FIG. 1: Contours of σ × BR(h → γγ)/(SM) vs. λ35 and
mH , for mh = 125 GeV and λ7 = 0. (Recall λ35 = λ3 +
λ5.) The MSSM prediction, neglecting loop corrections to
the bottom Yukawa (but effectively including corrections to
the Higgs potential), is shown by the dashed line.

1. If the theory contains hard breaking of the PQ via
λ7, then significant deviation is possible even for
mH ∼TeV in which case the leading effect is [10, 14]

rb ≈ 1 +
2

1 + 2m2
12/(λ7v2)

. (11)

2. If there is little or no hard breaking of the PQ,
λ7v2 ≪ m2

12, then a modified rb requires a light sec-
ond doublet. When soft PQ breaking is also small,
B ≪ m2

h, Eq. (9) resums all powers of (m2
h/m

2
H)

and (λ35v2/m2
H).

So far we have neglected the Higgs coupling to leptons,
but those can be added in a straightforward manner. If
the doublet H1 that couples to the down quarks couples
also to the leptons, then rb = rτ and the change to the to-
tal width is amplified by a small factor 1+(mτ/mb)2/3 ∼
1.1.
Supersymmetric examples. We now examine super-
symmetric extensions of the SM with a 2HDM effective
theory near the weak scale and extract the modifications
to Higgs observables.
In supersymmetry, holomorphy of the superpotential

requires a second Higgs doublet in order to couple the
Higgs sector to both up- and down-type quarks. Iden-
tifying Hd = iσ2H∗

1 , Hu = H2, the tree level quartic
couplings of the MSSM are

λ1 = λ2 =
g2 + g′2

4
, λ3 = −

g2 + g′2

4
, λ4 =

g2

2
,

λ5 = λ6 = λ7 = 0 . (12)

The coupling λ35 = λ3 + λ5 ≈ −0.14 is negative and
so tends to increase hbb̄. With λ35 fixed and assuming

2

energies. Neglecting leptons for now, the Lagrangian
is [10, 11]

− L = H†
1D

2H1 +H†
2D

2H2 +m2
1|H1|2 +m2

2|H2|2

+
λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2 + λ4|H1σ2H2|2

+
{λ5

2
(H†

1H2)
2 + (H†

1H2)
(

m2
12 + λ6|H1|2 + λ7|H2|2

)

+ YuH2ϵūRQL + YdH
†
1 d̄RQL + cc

}

. (2)

The parameters m2
12, λ6, λ7 and λ5 violate a U(1)PQ un-

der which (H†
1H2) has charge +1. A discrete Z2 subgroup

of this U(1)PQ controls the mixing between the two dou-
blets. In this paper, we loosely refer to approximate Z2

as the PQ limit. Since the coupling λ5 is even under the
Z2, it does not need to be small for our analysis to apply
and indeed we will treat it collectively with other Z2-
even couplings. We parameterize spontaneous symmetry
breaking (SSB) in a unitary gauge with

H1 =

(

h+

h1+ia√
2

)

, H2 =

(

0
h2√
2

)

, ⟨h2⟩ = v2 , (3)

where a, h1, h2 and the VEV v2 are real.
It is possible to diagonalize the Higgs mass matrix and

express the couplings in terms of the rotation angle α
connecting the interaction to the mass basis and of the
ratio tanβ between the VEVs of H2 and H1. This pro-
cedure gives rd ≡ vghdd̄

md
= −(sinα/ cosβ), ru ≡ vghuū

md
=

(cosα/ sinβ) and rV ≡ vghV V

2m2

V
= sin(β−α). The trigono-

metric expressions for the rX ’s are useful as they provide
the exact result and make apparent simple algebraic re-
lations between them [12]. They are less useful, however,
if one looks for more insight into the underlying theory.
Here, much in the spirit of [13, 14], we abandon the exact
but somewhat less revealing α−β formulation in favor of
a perturbative expansion, keeping track of the couplings
in Eq. (2) as we work out the solution.
Our scheme is useful if the doublet H1 is heavier than

H2, so that around the scale mh only H2 is accessible.
With this framework in mind we will obtain an effective
action for h2 to order (B/M2

1 )
3, where

M2
1 = m2

1 +
λ35h2

2

2
, B = m2

12 +
λ7h2

2

2
(4)

with1 λ35 = λ3 + λ5. We will not need to assume that
λ35v2 ≪ m2

1. This will improve the accuracy of our re-
sults for a mild hierarchy mh ∼< mH .

1 Compared with the basis of [10], (B/M2
1
) ∼ 1/ tan β and our λ35

equals their λ345. We regard insertions of λ7v2, λ6v2 on equal
footing as insertions of B, as they carry the same PQ charge.

Before proceeding to integrate out the heavy fields
in H1, we note some simplifying properties of the La-
grangian. First, we assume that CP is conserved to a
good approximation, and take all the potential couplings
to be real. Under this assumption, scalars and pseudo
scalars do not mix and we need only consider diagrams
involving the two neutral scalars h1 and h2. Second, as
defined in Eq. (2), λ4 projects neutral onto charged states
and vice versa. It does not enter in tree diagrams with no
charged external Higgs fields and we can ignore it in what
follows. Third, working to O(B3/M6

1 ), we can ignore λ6

and λ1 that affect the results beginning at O(B3/M6
1 )

and O(B4/M8
1 ), respectively.

Integrating out h1 we obtain

− Leff =
1

2
h2D2h2 +

1

2
m2

2h
2
2 +

λ2

8
h4
2 +

Yu√
2
h2tt̄

−
1

2
Bh2

1

D2 +M2
1

Bh2 −
Yb√
2
bb̄

1

D2 +M2
1

Bh2. (5)

The interactions of the canonically normalized SM-like
Higgs h with the fermions and gauge bosons can be read
off from (5), after accounting for wave function renormal-
ization at O(B2/M4

1 ). In particular, the bottom-Higgs
Lagrangian is given by

Yb√
2
bb̄

1

!+M2
1

B

(

v2 +

(

1−
f ′2

2

)

h

)

(6)

with

v2 = v

(

1−
f2

2v2

)

, v2 =
1√
2GF

∼= (246GeV)2,

f =

〈

Bh2

M2
1

〉

, f ′ =
∂f

∂v2
. (7)

Using (5) and (6) we obtain:

rb =
vghbb̄
mb

=
1

1− m2

h

M2
1

(

1 +
λ7v22
B

−
λ35v22
M2

1

)

,

rt =
vghtt̄
mt

= 1 +
B2

2M4
1

(

1− r2b
)

,

rV =
vghV V

2m2
V

= 1−
B2

2M4
1

(1− rb)
2 . (8)

The appearance of terms (m2
h/M

2
1 ) in rb is due to the

derivative operator in the effective vertex (6). The !

operator is replaced by ! → −m2
h when acting on an

external Higgs particle and by ! → 0 when acting on the
vacuum2. Sincemh corresponds to the physical mass, the

2 We thank Nima Arkani-Hamed for a discussion on this point.
This observation would also apply in a general effective theory
analysis, like e.g. the one in [15].

Expect dominant deviations in the down-
type sector fermions, other deviations 

are strongly suppressed 

AK, David Curtin and Raman Sundrum



“STANDARD” NATURALNESS 2

More SUSY signatures — direct production of the heavy higgses. Usually 
decay into the fermions and the light higgs - namely hh, ZZ, WW.  

but are often expressed in rather technical forms. For example, in ref. [98], we learn that the
coupling gHhh is proportional to

Ä
3m2

A� 2m2
h�m2

H

ä�
cos(2� � 2↵)� cot(2�) sin(2� � 2↵)

��
m2

A. Even an MSSM aficionado might have to resort to numerical estimates to have much in-
tuition for what such an expression means. On the other hand, numerically, one can see from
plots (e.g. in refs. [95] or [98]) that �(H ! hh) is typically about an order of magnitude
larger than �(H ! Z Z).

In fact, in most models it will be true that �(H ! hh) ⇡ 9 �(H ! Z Z), which follows
straightforwardly from the Goldstone boson equivalence theorem. Corrections are expected
to be of order m2

h/m
2
H . This result is likely known to experts but we have not seen it in the

literature, so we will explain it here. It offers a useful rule-of-thumb for experimentalists
considering whether to undertake a search for Higgs pair production. Assuming this factor of
9 between the heavy Higgs branching ratios, one can ask whether a planned search for Higgs
pair production can beat the cleaner, but rarer, Z Z ! 4` signal.

The factor of 9 in the rate comes from a combinatoric factor of 3 in the amplitude that we
can explain using a strategy that has appeared in ref. [45], namely working in the basis of
VEV eigenstates. We will denote by h the linear combination of fields that has a VEV, and H
the orthogonal combination:

h= sin� Hu+ cos� H†
d =

Ç
iG+

(v + h0+ iG0)/
p

2

å
, (30)

H = � cos� Hu+ sin� H†
d =

Ç
iH+

(H0+ iA0)/
p

2

å
. (31)

Notice that we are working not just with the real components of the Higgs fields but with entire
SU(2)L doublets. Furthermore, the real scalar Higgs modes h0 and H0 contained in h and H
will not be mass eigenstates, in general. On the other hand, the three Goldstone degrees of
freedom G0, G± for electroweak symmetry breaking are entirely contained in h, and only the
real scalar mode h0 in h has couplings to W± and Z bosons of the form h0VµV µ. Given LHC
data, we know that the VEV eigenstates are approximately the same as the mass eigenstates;
in other words, we are in the “alignment limit” cos(� � ↵) ⌧ 1, because the light Higgs is
observed to couple to particles proportional to their masses as in the SM [98]. As a result
we can think of the heavy Higgs boson as living mostly in H. The decays H0 ! h0h0 and
H0 ! ZL ZL, where we use the Goldstone equivalence theorem to relate the decay rate to
longitudinal Z bosons to decays to the Goldstone mode G0 inside h, both arise from a quartic
term in the potential containing one copy of H and three of h:

V � �̃1

Ä
H†h+ h†H
ä

h†h� �̃1

✓
vH0G+G�+

v
2

H0G0G0+
3v
2

H0h0h0+ H0h0G+G�+ . . .
◆

.(32)

Thus, there is a relative factor of 3 in the Feynman rule for H0 to two Higgs bosons relative to
H0 to two Goldstones. In the first case we have three h factors in the potential, one of which
must be replaced by a VEV and two with a physical Higgs boson. The combinatoric factor of 3
comes from the fact that we can replace any of the three h’s with a VEV. In the second case we
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again replace one with a VEV, but the other two with Goldstones. The difference is that H0 lives
in the real part of H and so must be paired with either an h or a v in the hermitian H†h+ h†H
factor; the two Goldstones must go in the h†h factor, and so we have no combinatoric freedom
in this case. (Let us also mention in passing that eq. (32) leads to several three-body decays of
the heavy Higgs, suppressed by phase space but not by couplings; the phenomenology of such
decays could be interesting, and is as far as we know unexplored.)

The subscript on the � terms counts the number of H fields appearing. By definition of H its VEV is zero, implying

@ V
@ H†

����
H=0
= m2

hHh+�1h |h|2 = 0, (13)

i.e. that the mass mixing is related to the quartic coupling �1:

m2
hH = ��1v2. (14)

Here, as usual, the VEV is determined by the quadratic and quartic terms for h, i.e. v2 = �m2
h/�0.

Let us first compute the decay rate of H ! Z Z in unitary gauge. There are two diagrams, as shown in the
left panel of Fig 2. The first involves the quartic coupling �1, and carries a combinatoric factor of 3 in selecting
which of the h lines radiating from the coupling are replaced by VEVs. The second diagram involves the mass
mixing m2

hH . Thus, the whole result is proportional to:

Ä
3�1v2 �m2

hH

ä 1

m2
H �m2

h

m2
Z

v
✏(pZ;1) · ✏(pZ;2). (15)

When m2
H � m2

Z , the answer is dominated by the longitudinal polarization of the external gauge bosons:

H h

⇥ v

⇥ v

Z

Z

�1 +
H
⇥

h

Z

Z

m2
hH

H
v⇥

h (G0)

h (G0)

�1

Figure 2: Left: the decay H ! Z Z in unitary gauge. Right: the decay H ! hh and the related decay to two
Goldstone modes. A relative factor of 3 arises from the combinatoric choice of which h leg to replace by a vev in
H ! hh.

4 Electroweakino transitions

The higgsino mass term is a Dirac mass µ
Ä

H̃uH̃d + h.c.
ä
= µ
Ä

H̃+u H̃�d � H̃0
u H̃0

d + h.c.
ä

. Focusing on the neutral
higgsinos, we can write the Dirac mass a sum of two Majorana mass terms:

�µH̃0
u H̃0

d + h.c.= �µÄH̃0
+H̃0

+ � H̃0�H̃0�
ä

, (16)

where

H̃0± =
1p
2

Ä
H̃0

u ± H̃0
d

ä
. (17)

Because the Majorana mass eigenstates involve equal admixtures of H̃u and H̃d , the limit tan� ! 1, in which
the Goldstones also live equally in the up-type and down-type Higgs fields, will play a special role in determining
branching ratios involving higgsino states.

4

Figure 11: Left: the decay H ! Z Z in unitary gauge, for which the VEVless eigenstate H first mixes
into the eigenstate h and then couples through its VEV to ZµZµ. Right: the decay H ! hh and the
related decay to two Goldstone modes. A relative factor of 3 arises from the combinatoric choice of
which h leg to replace by a vev in H ! hh.

The relative decay rate is also easy to understand in unitary gauge, as shown in Fig. 11.
In this case another contribution arises from the mass mixing of H and h, but this is related
to the coupling �̃1 by a tadpole cancelation condition. In other words, our choice of H as
the eigenstate with zero VEV relates the terms m2

Hh(H
†h+ h†H) and �̃1(H†h+ h†H)(h†h) in

the potential. In particular, the coupling for H ! hh vanishes in the limit m2
Hh ! 0, which is

the exact alignment limit where VEV eigenstates are mass eigenstates; this is reflected in the
factors of cos(� � ↵) in the gHhh coupling in e.g. ref. [98]. A little algebra shows that the
unitary gauge calculation matches the Goldstone equivalence estimate up to terms of order
m2

Z ,h/m
2
H , as expected on general grounds.

The case of a singlet scalar decaying to hh and Z Z is similar, but the combinatoric factor of
3 no longer exists, so we expect the branching ratios to be approximately equal.
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Compositeness: the generic behavior of the higgs sector — misalignment. 
We expect higgs couplings deviations (suppression) which is proportional to 

the ratio between the EW scale and the scale of the colored partners ☞ 

complementarity of exotic higgs searches with the direct searches for 
colored partners. 



NEUTRAL NATURALNESS

Similar to the partial TeV-scale compositeness: misalignment and universal 
suppression of the higgs couplings proportional to the FT.

Different from TeV-scale compositeness:

No colored particles, complementarity with the direct searches is lost, 
higgs couplings is the main signal 
Generically predict confining hidden valleys at the scale of ~ GeV. Higgs 
will have exotic decays: decays via secondary vertices or prompt decays 
h ➞ 4b, h➞4τ, etc. 
In folded SUSY (non generic) — complementary to the quirks searches
In twin higgs — direct radial higgs production 



BEYOND NATURALNESS — EWPT

In the SM the EW transition is a smooth crossover, there is no departure 
of equilibrium to produce the baryon asymmetry.  To change the nature of 
the EWPT we need new states, which couple strongly to the higgs.  Too 
light — excluded from the invisible higgs decays. Generic signature — 

deviation in higgs couplings 
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Figure 4. The region of parameter space where a strongly first-order EWPT occurs in the

“RH stau” benchmark model. Also shown are the fractional deviations of the h�� coupling

(left panel) and the e+e� ! hZ cross section (right panel) from their SM values. Solid/black

lines: contours of constant EWPT strength parameter ⇠ (see Eq. (2.9)). Dashed/orange

lines: contours of constant h��/�
hZ

corrections. (The h�� correction is always negative,

and the plot shows its absolute value.) In the shaded region, phase transition into a wrong

EM-breaking vacuum occurs before the EWPT.

Higgs factory could provide an even more sensitive probe in these models. The minimal

shift in this cross section compatible with a first-order EWPT is about 0.8% in the LH

Stau model, and 0.6% in the RH Stau model. The projected precision at ILC-500

(with a luminosity upgrade) is about 0.25%, while TLEP is projected to measure this

cross section with an impressive 0.05% accuracy. Such a measurement would provide

a definitive probe of the possibility of a first-order EWPT in these models.

Finally, if the BSM scalar responsible for the first-order EWPT is neither colored

nor electrically charged, electron-positron Higgs factories can still explore this scenario

by measuring the e+e� ! hZ cross section, and the Higgs cubic self-coupling. This is

illustrated in Fig. 6. The minimal fractional deviation in the hZ cross section compat-

ible with a first-order EWPT is about 0.6%, similar to the “stau” models above. This

can be probed at a ⇠ 2.5 sigma level at an upgraded ILC-500, and comprehensively

tested at TLEP. In contrast, the predicted deviations in the Higgs cubic self-coupling

are in the 10 � 20% range, making them di�cult to test at the proposed facilities.
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Figure 6. The region of parameter space where a strongly first-order EWPT occurs in the

Singlet benchmark model. Also shown are the fractional deviations of the e+e� ! hZ

cross section (left panel) and Higgs cubic self-coupling (right panel) from their SM val-

ues. Solid/black lines: contours of constant EWPT strength parameter ⇠ (see Eq. (2.9)).

Dashed/orange lines: contours of constant �
hZ

/�3 corrections. In the shaded region, phase

transition into a wrong vacuum (with h�i 6= 0) occurs before the EWPT.

space at > 3 sigma level in all such models. However, scenarios where the first-order

EWPT is due to a non-colored BSM scalars are just as plausible. LHC will not be

able to probe these scenarios: in fact, even when � is electrically charged, the shift it

induces in h ! �� in the region compatible with a first-order EWPT is too small to be

probed even at the HL-LHC. On the other hand, e+e� Higgs factories will be able to

comprehensively explore such scenarios, primarily due to a very precise measurement

of the Higgsstrahlung cross section, �(e+e� ! Zh). The impressive sensitivity of this

measurement expected at the ILC and, especially, at TLEP, makes it a uniquely robust

and powerful tool for addressing the issue of EWPT dynamics.

An important limitation of our analysis is that all our benchmark models have a

single scalar field. The most important new e↵ect in the presence of multiple fields

with masses around the weak scale is the possibility of accidental cancellations in the

BSM loop contributions to Higgs couplings. For example, in the MSSM, the stop sector
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Nightmare scenario 
— singlets, cause 
deviation in hZZ 
coupling ~O(1%). 

AK and Maxim Perelstein



BEYOND NATURALNESS — MORE

Higgs portal DM — invisible higgs decays, disappearing tracks 
from the higgs decay (Matt Low, Mike Spannowski, Tim Tait)

Neutrino masses — triplet scalar “higgs” in type II see-saw: 
production decay mode and reach (Rabi Mohapatra)



HIGHLIGHTS OF THE “TO-DO” 
LIST

Naturalness side: reach for the misaligned higgs couplings 
(universal suppression)

Naturalness — production of heavy higgses, especially decaying 
into fermions and the “SM higgs” (with equivalence theorem)

Measurement of hZZ coupling and higgs self-coupling

Trigger demands   


