Analysis of the Stability Margin of Nb₃Sn QXF cable for the Hi-Lumi LHC project

Author:

Enrico Felcini

Supervisors:

Marco Breschi Luca Bottura

CERN High Luminosity

CERN, October 2015

Outline

- Stability of accelerator superconducting cables
- Zero dimensional approach
- One dimensional approach
- Convergence studies
- Results with Nb₃Sn cable
 - Single-strand model
 - Multi-strand model
- Comparison with NbTi cable
- Summary

Stability margin

Stability margin:

the minimum energy density that an external source need to provide to cause a thermal runaway

E. Felcini

L. Bottura, "Superconductivity for accelerators", Erice, Italy, April-May 2013, pg. 401-451

Stability margin

Quench or Recovery?

How to determine the status of the system:

- Wait a lot after the disturbance and check the temperature [easy, obvious, high time consuming] > 0-D Model
- Check the integrated Joule power along the whole cable for each strand
 [smart, fast, low time consuming] - 1-D Model

Recovery ?

The trends of the temperatures are not enough:

Heat disturbance: 10 µs

Recovery !

Looking at the integrated Joule power, it is evident that it *will be* a recovery

Quench?

The trends of the temperatures are not enough:

Quench !

Looking at the integrated Joule power, it is evident that it *will be* a quench

E. Felcini

ERI

Heat disturbance: 100 µs

Stability Margin

• A bisection method with a convergence criterion of 5% is implemented for the calculation of the Stability Margin

Stability Margin

 Starting from the old results, the algorithm looks for the solution for the next value of Heating time

MQXF v2 Cable

MQXF v2 Cable Data

Parameter	Value
Cable Type	QXF2
Strand diameter [mm]	0.850
Cu/non Cu ratio	1.20
Number of strands	40
Transposition pitch [mm]	109
Width [mm]	18.15

MQXF cross section

Nb₃Sn Rutherford cable

Model description

ER

.uminosity

E. Felcini

G. Battistoni et al., "The FLUKA code: Description and bench-marking," in Proc. AIP Conf. Hadronic Shower Simul. Workshop, 2007, vol. 896, pp. 31-49

0-D^[1] model description

- All strands are lumped into one single thermal and electric element, with uniform temperature
- The non-uniformity of the magnetic field and the heat deposition are not taken into account

$$A_{St}C_{St}\frac{dT_{St}}{dt} = \dot{q}'_{St} + \dot{q}'_{Joule} - p_{St,He}h_{St,He}(T_{St} - T_{He}) - p_{St,Ja}h_{St,Ja}(T_{st} - T_{Ja})$$

$$A_{Ja}C_{Ja}\frac{dT_{Ja}}{dt} = -p_{Ja,He}h_{Ja,He}(T_{Ja} - T_{He}) - p_{St,Ja}h_{St,Ja}(T_{Ja} - T_{St})$$

$$A_{Ja}C_{Ja}\frac{dT_{He}}{dt} = \dot{q}'_{Ja} - p_{St,He}h_{St,He}(T_{St} - T_{He}) - p_{Ja,He}h_{Ja,He}(T_{Ja} - T_{He})$$

1-D^[1] model description

Heat Pulse

Model Elements

- THERMAL: N_{strand} (Nb₃Sn + Cu) + Glass Epoxy
- HYDRAULIC: Helium Bath
- ELECTRIC: **N**_{strand} (Nb₃Sn + Cu)

E. Felcini

[1] L. Bottura, "CryoSoft code THEA v. 2.2", December 2013

1-D: Thermal Model

Heat transfer equation:

$$A_{i}\rho_{i}c_{i}\frac{\partial T_{i}}{\partial t} - \frac{\partial}{\partial x}\left(A_{i}k_{i}\frac{\partial T_{i}}{\partial x}\right) = q_{i}' + q'_{Joule} + \sum_{j=1, j\neq i}^{N}\frac{\left(T_{j} - T_{i}\right)}{H_{ij}} + \sum_{h=1}^{N}p_{ih}h_{ih}\left(T_{h} - T_{i}\right)$$

Heat exchange occurs between:

- adjacent and non-adjacent strands through thermal resistance ^[1]
- strands and Glass-Epoxy through solid conduction
- Glass-Epoxy and Helium bath [Hydraulic element] with a stationary heat transfer model, obtained by a fitting of experimental results ^[2] {We are still waiting for experimental results of Nb₃Sn from CryoLab}

There is NO contact between the strands and the Helium bath

 [1] G. Willering, "Stability of superconducting Rutherford cables for accelerator magnets", Ph. Dissertation, University of Twente, The Netherlands, 2009

[2] P. P. Granieri, et al., IEEE Trans. Appl. Supercond., vol.24, 4802806, 2014

1-D: Thermal Model

1-D: Thermal Model

1-D: Electrical Model

- The strands are modelled with a distributed parameter circuit model ^[1]
- The strands are connected through conductances and mutual inductance ^[2]

High

uminosity

$$\mathbf{L}\frac{\partial \mathbf{T}}{\partial t} + \mathbf{R}\mathbf{I} - \frac{\partial}{\partial x}(\mathbf{C}^{-1}\frac{\partial \mathbf{I}}{\partial x}) = \Delta \mathbf{V}^{ext}$$

E. Felcini

[1] M. Breschi, "Current distribution in multistrand superconducting cables", Ph.D. dissertation, University of Bologna, Italy, 2001

[2] G. Willering, "Stability of superconducting Rutherford cables for accelerator magnets", PhD. Dissertation, University of Twente, The Netherlands, 2009

Operating condition

Nb₃Sn for Hi-Lumi LHC MQXFv2 quadrupole

- Total current = 16470 A
- Operating current density = 1600 A / mm²
- Peak magnetic field = 11.4 T
- Temperature = 1.9 K

Tcs – Top = 5.34 K *Tc – Top* = 10.94 K *Jop/Jc* = 0.472

Boundary condition

•
$$\mathbf{x} = \mathbf{0} \mathbf{m}: \Delta V = \mathbf{0}$$
; $\frac{\partial T}{\partial x} = 0$

• x = 2 m: $\Delta V = 0$; T = 1.9 K

Initial condition

- T = 1.9 K everywhere
- $I_j = I_{op}/N_{strand}$ $j = 1, N_{strand}$

Strands currents distribution

 The current distribution follows the trend of the magnetic field:
 the current is minimum where the field is maximum and viceversa

Strands currents distribution

- The propagation of the normal zone can be observed [video]
- While the zone is subjected to the transition from superconducting to normal state, the currents try to "escape", looking for a less demanding condition
- After the quench all the current is flowing in the copper and we can observe a stable behaviour

Strand Temperature

The distribution of the temperature follows the trend of the heat deposition

Strands Temperature

We can observe the propagation on the normal zone along the cable length [video]

Convergence studies

Suggested time steps:

Simulation Time	Minimum time step	Maximum time step
from $0.0 \sec to 1.0E-5 \sec t$	1.0E-8 sec	1.0E-7 sec
from $1.0E-5$ sec to $1.0E-3$ sec	1.0E-7 sec	1.0E-6 sec
from 1.0E-3 sec to END	1.0E-6 sec	1.0E-5 sec

Convergence studies

- Convergence within 3 % is reached with a mesh element size about 5 mm
- Reducing the mesh dimension entails a strong increasing of computational time

Model validation

NbTi for LHC MQ quadrupole

 THEA simulations are coherent with the *pseudo-experimental* results presented in [1], based on the reconstruction of the energy introduced in the magnet at quench by means of the Beam Loss Monitors and FLUKA simulations ^[2]

Heating time (s)

- [1] B. Auchmann et al. "Testing Beam-Induced Quench Levels of LHC Superconducting Magnets in Run 1", Phys. Rev. ST Accel. Beams 18, 061002, 2015.
- [2] G. Battistoni et al., "The FLUKA code: Description and bench- marking," in Proc. AIP Conf. Hadronic Shower Simul. Workshop, 2007, vol. 896, pp. 31–49

0-D model

UNIFORM Heat Deposition UNIFORM Magnetic Field

- Lower values of current determine higher QEs
- No significant variation of QEs can be observed with the raising of the heating time

Heating time [s]

0-D and 1-D models

UNIFORM Heat Deposition UNIFORM Magnetic Field

 The 0-D and 1-D models are in a good agreement, both for high and low currents

1-D: one-strand model

1-D: multi-strand model

1-D: multi-strand model

- For uniform heat deposition the QEs increase only slightly with the heating time
- For non-uniform heat deposition, the QEs increase with the heating time, especially at high operation current
- The QEs calculated for the uniform heat deposition at operating current are coincident with Enthalpy of the cable
- Uniform heat deposition implies a better stability of the cable, because at fast time scale we can observe a local behaviour and the peaks of the heat deposition are responsible for the quench

1-D: Nb₃Sn vs NbTi

Nb₃Sn for Hi-Lumi LHC MQXFv2 quadrupole

- Total current = 16470 A
- Operating current density = 1600 A / mm²
- Peak magnetic field = 11.4 T
- Temperature = 1.9 K

Tcs - Top = 5.34 KTc - Top = 10.94 KJop/Jc = 0.472

NbTi for LHC MQ quadrupole

- Total current = 11870 A
- Operating current density = 1820 A / mm²
- Peak magnetic field = 6.85 T
- Temperature = 1.9 K

Tcs – Top = 2.89 K *Tc – Top =* 5.04 K *Jop/Jc =* 0.465

Nb₃Sn has a double temperature margin with respect to NbTi

1-D: Nb₃Sn vs NbTi^[1]

- NbTi exhibits a greater increase of QEs than Nb3Sn in the multi-strand model
- The NbTi and Nb3Sn cables exhibit comparable values of QEs at low pulse durations

Quench energy analysis of LHC superconducting cables using a multi-strand, 1D model", IEEE Trans. Appl. Supercond., vol. 25, 4700405, 2015.

1-D: Nb3Sn vs NbT^[1]

Quench energy [mJ/cc] 10 $-\Box$ -36-strand model Iop = 11870 A - 1-strand model Iop = 11870 A 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E-06 1.0E-05 Heating time [s]

MQ Inner Layer

NbTi

+200%

1000

100

NbTi MQ Cable Data

Parameter	Value
Cable Type	LHC2
Strand diameter [mm]	0.825
Cu/non Cu ratio	1.95
Number of strands	36
Transposition pitch [mm]	100
Width [mm]	15.1

[1] Breschi, A. Bevilacqua, L. Bottura, P. P. Granieri, "Quench energy analysis of LHC superconducting cables using a multi-strand, 1D model", IEEE Trans. Appl. Supercond., vol. 25, 4700405, 2015.

Nb3Sn MQXF v2 Cable Data

Parameter	Value
Cable Type	QXF2
Strand diameter [mm]	0.850
Cu/non Cu ratio	1.20
Number of strands	40
Transposition pitch [mm]	109
Width [mm]	18.15

The Cu/nonCu ratio

- The thermal conductivity of the copper is much greater than the one of the superconductors
- We cannot observe a relevant increase of QEs from the onestrand to multi-strand model, due to the different Cu/nonCu ratio

Nb₃Sn thermal conductivity

- Nb₃Sn has a thermal conductivity one/two orders of magnitude lower then the NbTi one
- Using comparable thermal conductivity a strong increase of QEs from the one-strand to the multi-strand model is not achievable

1-D: Nb₃Sn vs NbTi^[1]

- The non-uniformity of the heat deposition has a very strong impact on the Nb₃Sn
- The Nb₃Sn cables are more sensitive to the details of the non-uniform distribution of the heat deposition than the NbTi cables

E. Felcini

[1] Breschi, A. Bevilacqua, L. Bottura, P. P. Granieri, "Quench energy analysis of LHC superconducting cables using a multi-strand, 1D model", IEEE Trans. Appl. Supercond., vol. 25, 4700405, 2015.

NbTi with Glass Epoxy

- A strong decrease of QEs is observed: a factor 4 for the one-strand model and a factor 2 for the multi-strand model
- The NbTi interstitial He gives a strong contribution to the stability margin for long heating times
- The presence of Glass-Epoxy induce the same trend in Nb₃Sn and NbTi

The role of Glass-Epoxy

The Glass-Epoxy gives a very weak contribution to the stability of the cable

- The core is introduced as a new thermal element and represent a thermal "bridge" between all the strands
- The current is assumed not to flow in the core in longitudinal direction, due to its high resistance
- Introducing the core means to increase significantly the electrical and thermal resistances between non-adjacent strands

 [2] G. Willering, "Stability of superconducting Rutherford cables for accelerator magnets", Ph. Dissertation, University of Twente, The Netherlands, 2009

CORE

- Stainless steel
- Width: 12 mm
- Thickness: 25 µm

- As expected, a lower stability of the cored cable is obtained at the 25% of the operating current
- Surprisingly, at full current, the cored cable exhibits higher QEs than the cable without core
- The core represent a thermal link between the strands: at 100% of operating current it is a bridge, while at 25% it is a wall.

Core as Thermal Element:

- Each non-adjacent strand can
 exchange heat only through the core
- Each strand is using the whole heat capacity of the core

Core is **NOT** Thermal Element:

- The heat capacity of core is not considered anymore
- The only effect of the core is to increase the thermal and the electric resistances between non-adjacent strands

 If the core is not considered as a thermal element (NO heat capacity) we cannot observe any variation of the QEs

Heating time[s]

The **core should be split in several thermal elements**, each one linked with the neighbouring strands

Summary

- The stability of the Nb₃Sn cable for Hi-Lumi LHC has been analysed by means of zero and one-dimensional models
- The absence of interstitial liquid helium does not allow significant enhancement of the QE with the duration of the heat disturbance
- Nb₃Sn exhibits a local behaviour at fast time scale, and a global behaviour at slow time scale
- The areas of the insulator and stabiliser do not seem to affect significantly the values of QEs for Nb₃Sn
- Although the operating conditions are more demanding, the Nb₃Sn QEs at fast time scale are very close to the NbTi ones

Future work

- Introduce the experimental value for the Heat Transfert Coefficient between the Helium bath and the Nb₃Sn, both stationary and transient model
- Implement a more realistic geometry and parameters of the strands, of the Glass epoxy and of the core

Compare these results with experimental values

Thank you for your attention

