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Stability margin

PERTURBATION

Stability margin: 
the minimum energy density that  
an external source need to provide  
to cause a thermal runaway  

L. Bottura, “Superconductivity for accelerators”, 
Erice, Italy, April-May 2013, pg. 401-451 
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Stability margin

L. Bottura, “Superconductivity for accelerators”, 
Erice, Italy, April-May 2013, pg. 401-451 
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Quench or Recovery?

• Wait a lot after the disturbance and check the temperature  
[easy, obvious, high time consuming]               0-D Model 

How to determine the status of the system:

• Check the integrated Joule power along the whole cable for  
each strand 
[smart, fast, low time consuming]               1-D Model 



E. Felcini

Recovery ?
The trends of the temperatures are not enough: 

Heat disturbance: 10 μs
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Recovery !
Looking at the integrated Joule power, it is 
evident that it will be a recovery

Heat disturbance: 10 μs
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Quench ?
The trends of the temperatures are not enough: 

Heat disturbance: 100 μs
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Quench !
Looking at the integrated Joule power, it is  
evident that it will be a quench
it “will be” a quench.

Heat disturbance: 100 μs
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Stability Margin

Energy

EmaxEmin

<5 %

Recovery Quench
Quench

• A bisection method with a convergence criterion of 5% is implemented 
for the calculation of the Stability Margin
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Stability Margin

Energy

• Starting from the old results, the algorithm looks for the solution for the 
next value of Heating time

Recovery

5 %
10 %

Quench

Recovery
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MQXF v2 Cable

E. Felcini

MQXF cross section

Nb3Sn Rutherford cable
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Model description
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Example of heat deposit calculation for the 
MQXA magnet (courtesy of L. Esposito, CERN)

Cavanna et al, “Design of the NB3SN Inner Triplet”, 04 September 2015
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0-D  model description

He BathGlass 
EpoxyStrands

• All strands are lumped into one single thermal and electric element, 
with uniform temperature 

• The non-uniformity of the magnetic field and the heat deposition are 
not taken into account

[1]

   [1]  L. Bottura, “CryoSoft code   
ZeroDee v. 1.3”, January 2001
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1-D  model description

∂T
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Model Elements
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• THERMAL: Nstrand (Nb3Sn + Cu) + Glass Epoxy 
• HYDRAULIC: Helium Bath 
• ELECTRIC: Nstrand (Nb3Sn + Cu)

[1]

   [1]  L. Bottura, “CryoSoft code THEA  
   v. 2.2”, December 2013
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1-D: Thermal Model
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Heat transfer equation:

• adjacent and non-adjacent strands through thermal resistance [1] 

• strands and Glass-Epoxy through solid conduction 
• Glass-Epoxy and Helium bath [Hydraulic element] with a stationary 

heat transfer model, obtained by a fitting of experimental results [2]  
{We are still waiting for experimental results of Nb3Sn from CryoLab}

Heat exchange occurs between:

[2] P. P. Granieri, et al., IEEE Trans. Appl. 
Supercond., vol.24, 4802806, 2014 

There is NO contact between the strands and the Helium bath
[1] G. Willering, “Stability of superconducting Rutherford cables for accelerator magnets”, 

Ph. Dissertation, University of Twente, The Netherlands, 2009 
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1-D: Thermal Model

Strand Strand Strand Strand

Strand Strand Strand Strand

Glass-EpoxyHelium
Bath
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1-D: Thermal Model

r t

The contact thermal resistance between the strand 
and the Glass-Epoxy is not taken into account
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1-D: Electrical Model
• The strands are 

modelled with a 
distributed parameter 
circuit model [1] 

• The strands are 
connected through 
conductances and 
mutual inductance [2] 

[1] M. Breschi, “Current distribution in 
multistrand superconducting 
cables”, Ph.D. dissertation, 
University of Bologna, Italy, 2001 

[2] G. Willering, “Stability of superconducting Rutherford cables for accelerator magnets”, 
PhD. Dissertation, University of Twente, The Netherlands, 2009 
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Operating condition
Nb3Sn

for Hi-Lumi LHC 
MQXFv2 quadrupole 

• Total current = 16470 A
• Operating current density = 1600 A / mm2

• Peak magnetic field = 11.4 T
• Temperature = 1.9 K

Tcs – Top = 5.34 K
Tc – Top = 10.94 K
Jop/Jc = 0.472

Boundary condition

• x = 0 m: ΔV=0  ; 

• x = 2 m: ΔV=0  ;  T = 1.9 K

∂T
∂x

= 0

Initial condition

• T = 1.9 K everywhere  

• Ij = Iop/Nstrand  j = 1, Nstrand  
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• The current distribution 
follows the trend of the 
magnetic field: 
the current is minimum 
where the field is 
maximum and viceversa 

 

Strands currents distribution
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Strands currents distribution
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Heat deposition• The propagation of the 
normal zone can be 
observed [video]  

• While the zone is subjected 
to the transition from 
superconducting to normal 
state, the currents try to 
“escape”, looking for a less 
demanding condition  

• After the quench all the 
current is flowing in the 
copper and we can observe 
a stable behaviour
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Strand Temperature
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• The distribution of the 
temperature follows 
the trend of the heat 
deposition x [m]
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Strands Temperature
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• We can observe the 
propagation on the 
normal zone along 
the cable length 
[video]

Heat deposition
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Convergence studies
• Convergence is reached with integration time 
   steps of 10-8 s for short disturbances (1 μs)

Suggested time steps:
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Int. time step = 1.0E-9 s 

Int. time step = 1.0E-8 s 

Int. time step = 1.0E-7 s 

Int. time step = 1.0E-6 s 

• Depending on the heating time, the proper
integration time step has to be chosen
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Convergence studies
• Convergence within 3 % is reached with 
   a mesh element size about 5 mm 
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Simulation parameters:

• Reducing the mesh dimension entails 
   a strong increasing of computational time
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Model validation
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Particle Shower Analysis 
QP3 Analysis 
Thermal Hydraulic Electric Analysis 

NbTi MQ 
54% Operation Current 

NbTi
for LHC MQ 
quadrupole 

• THEA simulations are coherent 
with the pseudo-experimental 
results presented in [1], based 
on the reconstruction of the 
energy introduced in the 
magnet at quench by means of 
the Beam Loss Monitors and 
FLUKA simulations [2]  

   [1] B. Auchmann et al. “Testing Beam-Induced Quench 
Levels of LHC Superconducting Magnets in Run 1”, 
Phys. Rev. ST Accel. Beams 18, 061002, 2015.

   [2] G. Battistoni et al., “The FLUKA code: Description 
and bench- marking,” in Proc. AIP Conf. Hadronic 
Shower Simul. Workshop, 2007, vol. 896, pp. 31–49  
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0-D model 

• Lower values of current 
determine higher QEs  

• No significant variation of 
QEs can be observed 
with the raising of the 
heating time
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0-D and 1-D models
UNIFORM Heat Deposition
UNIFORM Magnetic Field

• The 0-D and 1-D models are in a good agreement, both for high and 
low currents
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1-D: one-strand model
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1-D: multi-strand model
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1-D: multi-strand model
• For uniform heat deposition the QEs increase only slightly with the heating time 
• For non-uniform heat deposition, the QEs increase with the heating time, 

especially at high operation current 
• The QEs calculated for the uniform heat deposition at operating current 

are coincident with Enthalpy of the cable  
• Uniform heat deposition implies a better stability of the cable, because at fast 

time scale we can observe a local behaviour and the peaks of the heat 
deposition are responsible for the quench
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1-D: Nb3Sn vs NbTi
Nb3Sn

for Hi-Lumi LHC 
MQXFv2 quadrupole 
• Total current = 16470 A
• Operating current  

density = 1600 A / mm2

• Peak magnetic field = 11.4 T
• Temperature = 1.9 K

Tcs – Top = 5.34 K
Tc – Top = 10.94 K
Jop/Jc = 0.472

NbTi
for LHC MQ 
quadrupole 

• Total current = 11870 A
• Operating current  

density = 1820 A / mm2

• Peak magnetic field = 6.85 T
• Temperature = 1.9 K

Tcs – Top = 2.89 K
Tc – Top = 5.04 K
Jop/Jc = 0.465

Nb3Sn has a double temperature margin with respect to NbTi
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1-D: Nb3Sn vs NbTi
one-strand model multi-strand model

   [1]  Breschi, A. Bevilacqua, L. Bottura, P. P. Granieri, 
“Quench energy analysis of LHC superconducting 
cables using a multi-strand, 1D model”, IEEE Trans. 
Appl. Supercond., vol. 25, 4700405, 2015. 

[1]

+70%
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• NbTi exhibits a greater increase of QEs than Nb3Sn in the multi-strand model 
• The NbTi and Nb3Sn cables exhibit comparable values of QEs at low pulse 

durations
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1-D: Nb3Sn vs NbTi

1 

10 

100 

1000 

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 

Q
ue

nc
h 

en
er

gy
 [m

J/
cc

] 

Heating time [s] 

36-strand model Iop = 11870 A 

1-strand model Iop = 11870 A 

MQ Inner Layer 
NbTi 

1 

10 

100 

1000 

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 

Q
ue

nc
h 

en
er

gy
 [m

J/
cc

] 

Heating time [s] 

40-strand model Iop = 16470 A 

1-strand model Iop = 16470 A 

MQXF Inner Layer 
Nb3Sn 

TABLE I 
MQ CABLE DATA  

Parameter Value 

Cable Type LHC2 
Strand diameter [mm] 0.825 

Cu/non Cu ratio 1.95  
Number of strands 36 

Transposition pitch [mm] 100 
Width [mm] 15.1 

 
 
 

[1]

   [1]  Breschi, A. Bevilacqua, L. Bottura, P. P. Granieri, 
“Quench energy analysis of LHC superconducting 
cables using a multi-strand, 1D model”, IEEE Trans. 
Appl. Supercond., vol. 25, 4700405, 2015. 

+200%

Nb3Sn MQXF v2 Cable Data NbTi MQ Cable Data
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The Cu/nonCu ratio
• The thermal conductivity of 

the copper is much greater 
than the one of the 
superconductors 

• We cannot observe a relevant 
increase of QEs from the one-
strand to multi-strand model, 
due to the different Cu/nonCu 
ratio 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Nb3Sn thermal conductivity

• Nb3Sn has a thermal 
conductivity one/two orders of 
magnitude lower then the NbTi 
one 

• Using comparable thermal 
conductivity a strong increase 
of QEs from the one-strand to 
the multi-strand model is not 
achievable 
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1-D: Nb3Sn vs NbTi [1]

   [1]  Breschi, A. Bevilacqua, L. Bottura, P. P. Granieri, 
“Quench energy analysis of LHC superconducting 
cables using a multi-strand, 1D model”, IEEE Trans. 
Appl. Supercond., vol. 25, 4700405, 2015. 

Nb3Sn multi -strand model NbTi multi -strand model

• The non-uniformity of the heat deposition has a very strong impact on the Nb3Sn  

• The Nb3Sn cables are more sensitive to the details of the non-uniform distribution 
of the heat deposition than the NbTi cables

+85%
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NbTi with Glass Epoxy
one-strand model multi-strand model

• A strong decrease of QEs is observed: a factor 4 for the one-strand model and a 
factor 2 for the multi-strand model 

• The NbTi interstitial He gives a strong contribution to the stability margin for long 
heating times 

• The presence of Glass-Epoxy induce the same trend in Nb3Sn and NbTi 

+360%

+100%
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The role of Glass-Epoxy
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• The Glass-Epoxy gives a very weak contribution to the stability  
 of the cable
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Nb3Sn Cored Cable
• The core is introduced as a new 

thermal element and represent a 
thermal “bridge” between all the 
strands 

• The current is assumed not to 
flow in the core in longitudinal 
direction, due to its high resistance  

• Introducing the core means to 
increase significantly the 
electrical and thermal resistances 
between non-adjacent strands

• Stainless steel 
• Width:             12 mm 
• Thickness:       25 μm

CORE

[2] G. Willering, “Stability of superconducting Rutherford cables for accelerator magnets”, 
Ph. Dissertation, University of Twente, The Netherlands, 2009 
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Nb3Sn Cored Cable
100% Operating Current 25% Operating Current

• As expected, a lower stability of the cored cable is obtained at the 25% of the operating current 
• Surprisingly, at full current, the cored cable exhibits higher QEs than the cable without core 

• The core represent a thermal link between the strands: at 100% of operating 
current it is a bridge, while at 25% it is a wall.
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TITLENb3Sn Cored Cable
Core as Thermal Element:
• Each non-adjacent strand can 

exchange heat only through the 
core

• Each strand is using the whole 
heat capacity of the core

Core is NOT Thermal Element:
• The heat capacity of core is not 

considered anymore
• The only effect of the core is to 

increase the thermal and the 
electric resistances between  
non-adjacent strands
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Nb3Sn Cored Cable

• If the core is not 
considered as a thermal 
element (NO heat capacity) 
we cannot observe any 
variation of the QEs
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The core should be split in several thermal elements, each 
one linked with the neighbouring strands 
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Summary
• The stability of the Nb3Sn cable for Hi-Lumi LHC has been analysed 

by means of zero and one-dimensional models  

• The absence of interstitial liquid helium does not allow significant 
enhancement of the QE with the duration of the heat disturbance 

• Nb3Sn exhibits a local behaviour at fast time scale, and a global 
behaviour at slow time scale  

• The areas of the insulator and stabiliser do not seem to affect 
significantly the values of QEs for Nb3Sn 

• Although the operating conditions are more demanding, the Nb3Sn 
QEs at fast time scale are very close to the NbTi ones 



E. Felcini

Future work

• Introduce the experimental value for the Heat Transfert Coefficient  

between the Helium bath and the Nb3Sn, both stationary and 
transient model  

• Implement a more realistic geometry and parameters of the strands, 

of the Glass epoxy and of the core

Compare these results with experimental values
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