
Seismic'tomography:''
a'geophysical'inverse'problem'featuring'
O(106)'observa=ons'and'unknowns,'plus'

massive'volumes'of'modelled'data.''
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Blue:'moderate'to'large'earthquakes'from'1999I2010.'
Red:'seismic'sta=ons'that'recorded'them.'

On'their'way'from'earthquakes'to'seismological'sta=ons,''
seismic'waves'sample'the'earth’s'interior.'The'3ID'structure'of'
the'interior'can'be'inferred'if'enough'wave'paths'cross'at'depth.'



Large'earthquakes''
can'be'measured''

anywhere'on'earth.'

Data'example:'earthquake'
of'magnitude'6.8'in'
Vanuatu,'recorded'by'
seismological'sta=ons'
around'the'world.'
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Arrivals'in'phases'(P,'PP,'Pdiff,...)''
='episodic'pulses'of'wave'energy'

=me'in'sec'since'earthquake'

di
st
an
ce
'in
'd
eg
re
es
'fr
om

'e
pi
ce
nt
er
'

Pdiff'

P'triplicated'

teleseismic'P'

PP'

S'

SS'

Seismic'tomography:'
'

Invert'for'the'subsurface'
structure'that'produces'
this'observable'surface'
wave'field.'Two'parts:'

1)  Radially'symmetric'
structure.'

2)  3D'devia=ons'from'
radially'symmetric.'



…but'we'are'interested'in'the'weak'
lateral'devia=ons'that'occur'in'reality.'
Elas=c'moduli'and'wave'veloci=es''
vary'by'a'few'percent.'

Simulated'wave'propaga=on,'6'minutes'a\er'an'
earthquake'at'the'North'Pole.'Spherically'
symmetric'models'are'very'decent'
approxima=ons…'

Seismic'waves'sample'an'almost'spherically'symmetric'planet'

Inversion'for'weak'3D'heterogenei=es'!'a'linearizable'inverse'problem'



Wavefield'~15'min'a\er'earthquake'at'North'Pole'
Energy'travels'in'wave'packets'
(�seismic'phases�).'

When'a'phase'hits'a'discon=nuity'
(e.g.'the'surface),'it'spawns'several'
more'phases.'

By'now,'a'sta=on'here'has'
recorded'many'different'phases.'

What'can'be'inferred'about''
earth'structure?'

G.'Jahnke'



The'inverse'problem:'How'do'travel=me'measurements'(for'
phases'P,'PP,…)'sense'the'structure'of'the'mantle?'

travel=me'
measurement'

velocity'
structure'

Sensi=vity'Ki'of'a'PIwave'travel=me'
measurement'di'to'velocity'varia=ons'
dv/v'in'the'earth’s'mantle.''

sensi=vity'kernel'

Δti
σ ti

Δv v
σ v



Inversion'result:'3D'varia=ons'in'seismic'wave'velocity''
(a'proxy'for'mantle'temperature)''

dv/v'is'on'the'
order'of'a'few'
percent'

PhD'work''
Kasra'Hosseini'



Example:'3ID'mapping'of'seismically'fast'domains'in'the'mantle.''
Piles'of'ancient'seafloor'(lithosphere)'that'have'been'sinking'back'into'

the'mantle'over'the'past'100I200'million'years.''

Sigloch'et'al.'2008'Nature'Geoscience'



credit: NASA

Aris Karastergiou
Pulsars



NASA



Ticks from a moving and ticking clock will be Doppler shifted

Radio waves will be delayed by dispersion effects in the 
interstellar medium; larger distance = larger delays

Rate of ticking tells us something about the clock



Clocks moving in a strong field of gravity will send out 
ticks delayed by the field

Clocks moving in a strong field of gravity will  
have strange orbits



Antoniadis et al.

pulsars



• 1.2 to 2 Solar masses of dense nuclear matter, spinning 
with periods between milliseconds and several seconds 

• diameter of a medium sized town 

• superfluid interior surrounded by crust 

• super-strong surface magnetic field 1012 Gauss 

• co-rotating charged magnetosphere & light cylinder 

• high energy streaming plasma 

• radio, optical, Gamma-ray, X-ray emission 

• Gravitational wave radiation

main properties of pulsars



Form beams from an array 
or use single dish point your telescope

Channelize your signal for 
dedispersion and RFI excision

time

fre
qu

en
cy

dedisperse apply differential frequency delay

Power (f,t)

fold Fold at known pulsar period 
or search for period

Observing pulsars



• Typical observations take place around 1 GHz or ~30 cm 

• Pulsar signals are bright across the 30 MHz to 5 GHz range 

• Radio telescopes in this range typically sample a bandwidth of 0.5 
the observing frequency 

• 500 MHz of bandwidth require a sampling rate of 1 Gsample/s 

• For interferometry, multiply that rate by the number of tied-array 
beams 

• Example: 1000 tied array beams produce 1 Tsample/s or 1-4 TB/s for 
8 to 32-bit sampled data 

• Data rate reduction by choosing appropriate time-frequency 
resolution 

• Data rate reduction by integration, after considering the physical 
properties of the observed signal, depending on objectives

data rates



dedispersion

Lorimer et al. 



Jodrell Bank Centre for Astrophysics
folding



Visit https://www.skatelescope.org/ for details

https://www.skatelescope.org/


Ransom et al. 2014



highly precise millisecond pulsars serving as arms of a 
Galactic Gravitational wave detector 

sensitive to nHz frequencies, binary supermassive 
 black hole mergers



Algorithms to Architectures

Juha Jäykkä (jj411@cam.ac.uk)
University of Cambridge, UK
London, 2016-01-13



COSMOS Intel Parallel Computing Centre
I optimise, modernise, design, make sustainable research software
I intimate link between hardware, algorithms, software
I excellent link with Intel, collaborating in all aspects of software

development and two-way exchange of ideas and knowledge
I actively engaged with vendors (mostly SGI, Intel) designing new

systems (e.g. the MG Blade)
I 3.5 (research) software engineers working as part of research groups
I awarded the HPCwire Readers’ Choice Award (Best High

Performance Data Analytic) 2015
[J.P.Briggs et al in “High Performance Parallelism Pearls”, vol 2,
171-190, Morgan Kaufman, Boston, 2015; arXiv:1503.08809]



Planck MODAL Bispectrum pipeline

EARLY UNIVERSE THEORY

CMB FULL-SKY MAPS

CLEANED PLANCK CMB MAPS
Foreground-separated with freq. maps

 

SIMULATED CMB MAPS
Systematics: masking, scanning, noise...

 

MODE-FILTERED  MAPS
& CROSS-CORRELATION
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THEORY  BISPECTRUM
Blll  = Σ αijk qi qj qk

 TRANSFER FUNCTIONS
BISPECTRA PROJECTION
 Einstein-Boltzmann eqns

   qn (k)           qn (l) 

 Early- to late-time operator 

 Projects to CMB basis qi 
 

Γi ...p=‹qi qj qk qmqn qp›
αijk = Σ Γi ...pαmnp

    Tl(k)  _ ~

~  ~  ~

NON-GAUSSIAN MAP-MAKING
    

PRIMORDIAL NON-GAUSSIANITY
Model building, use in-in formalism, 
stochastic methods.
Modal expansion in 
primordial qn(k):

B(k1,k2,k3)  = Σ αmnp qm qn qp

αijkαmnp

_

_ _ _ _

αijk

_

BISPECTRUM ESTIMATOR
           fNL = Σ αijk βijk

POLYSPECTRA SEARCHES
 AND MCMC OPTIMIZATION
  with power spectrum likelihood

Exploits  αijk modal expansion 

MNG  fNL

ValidateIterate

MODAL_cmb

MODAL_prime

MODAL_joint

© EPS Shellard, 2014 
University of Cambridge

Many-core 
 Xeon Phi 

Shared-
memory

Generic 
 cluster 



Confrontation of Observation and Theory
Cosmology

I cosmic microwave background (Planck), large scale structure (DES)
I gravitational waves (aLIGO), cosmic defects
I also needs some traditional HPC for solving PDEs numerically
I all either create and process or just process very big datasets

Astrophysics
I solar atmosphere and interior simulations
I investigations of evolution of protoplanetary disks

In all this data sizes are big enough that
I movement of data must be either avoided altogether or carefully

orchestrated () tightly-coupled heterogeneous systems)
I processing efficiency is paramount: the work that led to the

HPCwire award, provided an increase of two orders of magnitude
I importantly, one order of mag from choosing the appropriate

Algorithm to Architecture



Future Challenges

Computing Hardware Becoming Harder to Use Efficiently
I challenging nested parallelism (vector, threads, processes)
I multi-level memory hierarchy: registers, caches, fast RAM (on-chip

HBM), slow RAM (classic DRAM), distributed off-node RAM, etc
I widening vector units and many-core architectures
I non-SIMD CPU performance hasn’t really increased since 2008 or

earlier; GPU even more disruptive to codes than SIMD
I many codes have reached their scaling limits: cannot simply add

nodes to increase performance either
I increasing imbalance between non-volatile IO, memory IO and GF/s

Rapidly Increasing Size of Data
I cannot really move around any more
I often needs to be post-processed (visualised) remotely (OSPRay!)
I or even on-the-fly/in-situ: throw away uninteresting data like LHC



Research Software in the Future

Co-design Hardware and Software
I Alan Turing was a co-designer (Bombe to break Enigma)
I co-design useful for both CPU, many-core, and GPU codes
I need to engage more specialised (research) software developers
I COSMOS was involved in co-designing with SGI the "MG-blade" for

Intel Xeon Phi co-processors and GPUs in SGI UV2000 systems
I currently involved in the design of an advanced hybrid "co-cluster"
I helps early adoption of new hardware

Productivity of Big Data Analysis and Computing
I typical HPC software isn’t the easiest to use or maintain
I easy to use tends to be inefficient (1st vs 100th solution)
I involve software engineers to combine ease of use and efficiency
I workflow management tools can address workflow inefficiencies



Algorithms to Architectures
I Develop architecture-aware and architecture-specific algorithms to

process Big Data and simulate faster
I not just bigger data and bigger simulations but also present size

more energy efficiently and faster (not necessarily the same thing)
I Design to preserve data locality through in-situ and on-the-fly

post-processing
I COSMOS IPCC participates in the development of Intel’s OSPRay

in-situ visualiser, HAM offload library, etc
I Engage with hardware vendors and co-design heterogeneous systems

to ensure early adoption of next generation hardware
I Broader impact through public release of world-leading data analytic

parallel software packages
I use standards (Fortran, C, C++, OpenMP, OpenCL etc) to ensure

portability
I Other external impacts

I ISC2015 OSPRay visualisation demo with Planck data (first public
demo of KNL)

I Big Data real-time visualisation demo at SC2015 with 10TB Walls
data

I Multi-disciplinary interactions essential to reach full potential



Big data problems for transient sky 
surveys in astronomy   

S.J. Smartt, Ken Smith, Darryl Wright, D. Young (Queen’s University 
Belfast), K. Chambers, M. Huber, E. Magnier, J. Tonry, L. Denneau, B. 
Stalder,  A. Heinze  ++ (IfA, Hawaii)

LSST : Large Synoptic 
Survey Telescope 
(2020-2030)

Pan-STARRS + ATLAS (now  
- 2020+)

ATLAS



1. Image recognition : real/bogus and rapid 
astrophysical classification (1-10TB image data 
per day) 

2. Massive database : 1 billion objects, 10000 
measurements over 5 yrs (indexing, database 
partitioning, database architecture) 

3. Turn around speed : insert 64000 per sec into 
database (24hr spread). Index and association  

Big data problems for transient sky 
surveys in astronomy   



MD Reference Stack
(MD06)



Giga-pixel camera : 1.4 
gigapixels
3 degrees diameter 
7 square degrees

LSST Camera : 3.2 
gigapixels
3.5 degrees diameter
10 square degrees



Difference images - to find transient and variable 
sources 



Average number of detections per day in PanSTARRS ~ 10 million

BEFORE Machine 
Learning Filter applied

Example of current data rate processing 

x 2GB per image

x 107



Image input - which are 
real, which are not ? 

Floating point number between 0 and 1
 Bogus objects have H < 0.5  
 Real objects have H > 0.5

10 D.E. Wright et al.

Table 2. Comparison of learning algorithms.

Classifier Model Parameters Threshold FoM

Artificial Neural Network s
2

=200, � = 5 0.547 0.233
Support Vector Machine (RBF) C=3, gamma=0.01 0.788 0.196
Random Forest n estimators=1000, max features=25, min samples leaf=1 0.539 0.106

a)

b)

Figure 7. a) Comparison of the best models for various learning
algorithms applied to the held out test set. b) Detail of ROC
curve of the best performing classifier, the Random Forest shown
in a). At a FPR of 1% the FoM shows that in practice we expect
to operate at a MDR of 10.6%.

from Table 2. The predictions of the 3 methods are corre-
lated; a candidate highly ranked by the RF is likely to also
be highly ranked by the other 2 classifiers, but there are still
detections of real transients that are discarded by only one
of the classifiers. From Fig. 9 there are 24 detections labelled

Figure 8. Hypothesis distribution for the optimal Random Forest
classifier applied to the test set.

Table 3. Results of combining classifiers.

Method FPR MDR

Majority Vote 0.02 0.06
Mean Hypotheses 0.01 0.12
Hypotheses as Features 0.01 0.12

as real that only the RF wrongly rejects, it is these examples
that we hope to recover by combining classifiers.

We tried only a few of the simplest combination strate-
gies. First we simply classified a detection based on the ma-
jority vote of the 3 classifiers. Second we assigned each de-
tection a hypothesis that was the mean of the hypothesis
values output by each classifier. This produced a new dis-
tribution of mean hypotheses, where we again selected the
decision boundary to produce the FoM. Finally we trained
a SVM using the 3 hypotheses for each detection as the fea-
tures representing that detection. In the end none of these
methods outperformed the RF classifier, though the perfor-
mance was comparable (see Table 3).

This result is unsurprising given that the classifiers are
highly correlated and there is no guarantee that these meth-
ods will outperform the best individual classifier (Fumera &
Roli 2005). The RF is in itself an ensemble of classifiers (the
individual decision trees) and may already incorporate much
of the gain in performance we can expect from these simple
methods.

c� 0000 RAS, MNRAS 000, 000–000

Machine learning for transient discovery in
Pan-STARRS1 difference imaging
D. Wright et al. MNRAS, 2015, 449, 451

Random Forest Classifier, neural 
networks, support vector 
machines

1. Image recognition : machine learning 

Working in real time now, but two problems 
• Have hit floor in performance for 1% FPR : can’t do better than 

5-10% MDR 
• Astrophysical classification, once we decide REAL/BOGUS 

Receiver Operating 
Characteristic curve

http://star.pst.qub.ac.uk/ps1threepi/psdb/

ROC



ATLAS  (2 x 0.5m telescopes, 20 mag, all-sky 2-4 times 
per night) 

• Object : 100 bytes (conservative! FP number 4 bytes, 
double=8 bytes. Excluding indexes, overlapping partitions.)

• 1 x 109  sources
• 1 x 1012 detections per yr 
• 100 TB database per yr (x 2-3 for backup)

Large Synoptic Survey Telescope 
• 40 x 109 sources (after Year 1)

• 1 x 1012 detections per yr
• 100TB database per yr (but 10 yr rolling project, 

and “forced” measurements. Final = 15PB)

2.  Massive databases  



1. “Small projects” now producing big data and 
associated problems

2. UK will play major role in LSST :  both image 
analysis, classification and database architecture 
unsolved (LSST developing qserv) 

3. Speed : insert 64000 per sec into database (24hr 
spread, so probably worse).  Need to rapidly 
index and associate, and be querying at same 
time (support multiple users)

Big data problems for transient sky 
surveys in astronomy   



Compute and Data-Intensive Simulations, 

Error Analysis & Control in the 

Chemical Sciences 

  Peter Coveney 
Centre for Computational Science, 

Department of Chemistry, 
University College London 

 
Alan Turing Institute Summit 

13 January 2016 



Computational Application to Drug Affinity Ranking 
– Single MD simulation 

2 

PROTEIN 

DRUGS 

SINGLE MD 

Predictions from Single Simulations 

Errors uncontrolled 
Results unreproducible 



Computational Application to Drug Affinity Ranking 
– Ensemble Simulations 
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Predictions from Ensemble Simulations 

Errors fully under control; 
Results reproducible. 
 
(Data from Bcr-Abl kinase 
ligand binding.) 



4 

Single vs Ensemble MD Simulations 

The binding free energy can vary widely (up to 12 kcal/mol) between two single 
simulations. 

Single simulation: not reproducible, unscientific! 

Drug – EGFR             Drug – HIV-1 protease 

Wan & Coveney, J. R. Soc. Interface, 8, 1114-1127, (2011).   
Wright, Hall, Kenway, Jha & Coveney, J. Chem. Theory Comp. (2014), DOI: 10.1021/ct4007037. 



Binding Affinity – Data Intensive Workflow 

Applications used include: NAMD, CHARMM, AMBER, VMD…  

Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) & Entropy Calculation  

5 

Ensemble 
size p 

MMPBSA 

Nmode 

5 

1. Model preparation; 2. Equilibration; 3. Production; 4. Free energy calculation; 
5. Analyses and results 

S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, Ileana, and P. V. Coveney,  
Journal of Chemical Information and Modeling, 48, (9), 1909-1919 (2008) 



Calculating Clinically Relevant Binding Affinities 

6 Wright, DW, Hall, BA,Kenway, OA, Jha, S and Coveney, PV, "Computing Clinically Relevant Binding Free 
Energies of HIV-1 Protease Inhibitors.” J. Chem. Theory Comput., 2014, DOI: 10.1021/ct4007037 
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This work used several of the most powerful 
supercomputers in the USA, UK, and EU. 

FDA-approved drugs to wild-type HIV-1 protease 



Ranking of p-MHC Binding Free Energies 

7 

The influence of ensemble size on the reproducibility 
!  Larger sizes of ensemble make rankings more reproducible and with 

lower standard deviations.  

! One should use ensembles containing a minimum of 25 replicas per 
ensemble to provide reproducible results. 

S. Wan, B. Knapp, D. Wright, C. Deane, P. V. Coveney,  
J. Chem. Theory Comput. 11 (7) 3346-3356 (2015) 



!
Euclid!

!
 Europe's Next Space-Based !

Cosmology Experiment!
!

Tom Kitching (UCL MSSL) – Euclid Science Lead!



What is the Universe made of? !
•  Euclid is designed to to 

decisively answer this 
question!

•  Explanations require 
either: !
– Changing general 

relativity !
– A new fundamental field 

(like the Higgs) !
– Multiverse  !



What is Euclid ?!
•  Due to launch in 2020 !
!
•  UK leads Science,    

Data Processing & 
Engineering aspects !

•  Product: Hubble-Space 
Telescope quality 
images over 75% the 
available sky over 75% 
the age of the Universe !







2 weeks!



6 months!



1 year!



5 years!



Big Data !

•  The largest CCD array ever flown in space !

•  36 4k x 4k chips !

•  Need 36 stacked HD TVs to display one image !

•  Euclid will make one image every 5 minutes 
continuously for 6 years !



Big Simulations !

•  Only have one Universe !

•  So need to re-run the experiment in simulations !

•  Require > 106 Universe simulations !
!
!

•  Hundreds-thousands of PB required!



Total Science Storage Requirements !
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•  Euclid will observe: !

75% of extragalactic sky !
over 75% the age of the Universe !

!
•  Designed to determine nature of dark energy !

•  Big Data, Big Simulations !

•  Big Opportunity for UK & the ATI !



Efficient Massive-Scale Graph Processing 

Eiko Yoneki 
eiko.yoneki@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~ey204

Systems Research Group
University of Cambridge Computer Laboratory



Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents Airline Graphs

Social media data

Web 1.4B 
pages(6.6B 
links) 

1



Everything will be connected in Future!

3
Protein Interactions 

[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents

Airline Graphs

Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Social media data

Web 1.4B 
pages(6.6B 
links) 

IoT

2



Data-Parallel vs Graph-Parallel
� Big data forms complex networks: key to solve problems 

in diverse fields 
� Web 1.4B pages + 6.6B links; Brains 100B neurons + 700T links
Æ 100s GB of memory

� Data-Parallel for everyone? Graph-Parallel is hard!
� Only for big players with HPC/Large Clusters?

� BSP: Pregel, Giraph, 
Graphlab

� Unifying graph- & data-
parallel: GraphX/Spark

� Data-flow programming: 
NAIAD, DryadLINQ

3



Big Data: Scale-Up vs Scale-Out
� Popular solution for big data processing
Æ scale and build distribution, combine theoretically unlimited 
number of machines in single distributed storage 

� Scale-up: add resources to single node in system (e.g. HPC)
� Scale-out: add more nodes to system (e.g. Amazon EC2)

4



Do we really need large clusters?
� Laptops are sufficient

from Frank McSherry HotOS 2015 5

Fixed-point iteration: 
All vertices active in 
each iteration
(50% computation, 50% 
communication)

Traversal: Search 
proceeds in a frontier
(90% computation, 10% 
communication)



Bring Big Data Processing to Single Computers

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

HD/SSD 
(External Memory)

� Use of powerful HW/SW parallelism
� SSDs as external memory

� CPU/GPU integrated heterogeneous many core architecture

� Open up massive graph processing to everyone 

Parallelism
Here

CPU
+ multiple GPU 

Clusters
7

Amdahl's 
law

6



Graph Computation Challenges

� Data driven computation: dictated by graph’s structure and 
parallelism based on partitioning is difficult

� Poor locality: graph can represent relationships between irregular 
entries and access patterns tend to have little locality

� High data access to computation ratio: graph algorithms are often 
based on exploring graph structure leading to a large access rate to 
computation ratio

7

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)



Research Vision: Synthesis of Entire Stack
� Algorithms, S/W and H/W for mainstream parallel approaches are not 

effective for more complex structured data from real world
� Data and algorithms dictate complex & irregular graph data processing: 

Utilise systems’ parallelisms and resource coordination - no burden of 
algorithm implementation

� Close gap between domain algorithms and systems research 
� Programming paradigm and model (runtime, algorithmic, query layer…)

� Opening up fresh research areas such as algorithm independent optimisation

� Exploit different parallelism at different scales (SSD, CPU/GPU)
� Map input data structure and algorithms onto processing model
� Auto-tuning structured Bayesian optimisation for dynamic scheduling

� Complex decision making, and resource provisioning in complex parameter space 

� Inter-disciplinary approach required                                                      
(distributed systems, algorithms, statistics, computer architecture, database…) 8



Big Data: Technologies 

� Distributed infrastructure
� Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App 

Engine, Elastic, Azure)

cf. Multi-core (parallel computing)

� Storage
� Distributed storage (e.g. Amazon S3, Hadoop Distributed File 

System (HDFS), Google File System (GFS))

� Data model/indexing
� High-performance schema-free database (e.g. NoSQL DB - Redis, 

BigTable, Hbase, Neo4J)

� Programming model
� Distributed processing (e.g. MapReduce)

9



ML framework (e.g. TensorFlow)

Big Data Analytics Stack

10

NAIAD



Data Centric Approach for Big Data Generation 
� Data is a token in programming flow and networking, and 

impacts computer system's architecture

11

Graph/Network
(graph theory, 

ML…)

Distributed computing
(Concurrent programming,

vectorisation, memory,  
multi-core…)

Data analytics
(clustering,
ML, NN… )

Algorithms for parallelism
(Optimisation, sampling, 

approximation..)
Data Centric
Systems and 

Networking Auto-tuning
(Decision tree, 

probabilistic influence, 
Bayesian opt…) 

Basics of Statistics 
(Linear regression,

dimension reduction) 



Challenges in data analysis for 
gravitational wave detectors

Jonathan Gair, School of Mathematics, Univ. of Edinburgh,



Gravitational wave detectors
❖ A major international effort is underway to 

detect gravitational waves (GWs) for the 
first time.

❖ A ground-based network of kilometre-scale 
interferometers (LIGO, Virgo etc.) is in the 
middle of its first observing run with 
“Advanced” sensitivity.

❖ Radio telescopes are hunting for nanohertz 
GWs through precise timing of arrays of 
millisecond pulsars (PTAs).

❖ A million-kilometre interferometer in space 
(eLISA) will be launched by ESA as the L3 
mission in the Cosmic Vision programme.



Challenges in data analysis
❖ These are new experiments and therefore pose new challenges.

❖ The raw data is not as “big” as that from some other experiments

- LIGO/Virgo sample at ~4kHz over ~month to ~year observing runs. 
Terabytes of data from each observing run.

- eLISA will have a much smaller sampling rate (~1Hz) and therefore 
three orders of magnitude less data.

- The data used for GW analysis with PTAs are the residuals for each 
of ~50 pulsars, measured every ~2 weeks over ~10 years.

❖ Challenges arise from the complexity of the data and the expected 
signals.



Challenges - large parameter spaces
❖ Many searches are performed on LIGO data, 

targeted at different source classes

❖ Low-latency for rapid follow-up.

❖ Modelled sources - binaries of different 
types, continuous waves etc.

❖ Un-modelled sources (bursts), both 
targeted (GRBs or SNe) and un-targeted.

❖ Stochastic background.

❖ The eLISA data will contain thousands of 
sources that overlap in time and frequency, 
creating a confusion problem.

❖ Each source is characterised by ~10 
parameters that must be estimated.



Challenges - noise characterisation
❖ The statistical properties of the noise in 

GW detectors is poorly understood.

❖ Background typically estimated by 
“timeslides”. Need to repeat analysis 
many times to reach desired 
significance level.

❖ For PTAs, data is collected over many 
years with many different instruments 
that have different noise properties.

❖ Need to fold noise measurement 
uncertainty into parameter estimation. 

8 L. Lentati et al.
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Figure 5. (Left) Post-fit residuals for PSR J1909�3744 after subtracting the maximum likelihood timing model without including any additional stochastic
parameters in the TOA domain analysis. The weighted RMS is 112ns with a reduced �2 of 1.7. Colours represent di↵erent observing systems: (black)
WBCORR, (red) PDFB1, (green) PDFB2, (dark blue) PDFB4, (light blue) PDFB4a. (Right) Example profile data for PSR J1909�3744 from four di↵erent
observational epochs, each with a di↵erent observing system. The di↵erent overall fluxes, o↵sets and noise levels in each are apparent.

Table 1. Interpretation of the evidence

R log(R) P Strength of evidence

1! 3 0! 1 0.5! 0.75 Not worth more than a bare mention
3! 20 1! 3 0.75! 0.95 Positive

20! 150 3! 5 0.95! 0.99 Strong
> 150 > 5 > 0.99 Very strong

5.1 PolyChord

The nested sampling approach (Skilling 2004) is a Monte-Carlo
method targeted at the e�cient calculation of the evidence, but
also produces posterior inferences as a by-product. Recently a new
nested sampling algorithm, Polychord (Handley et al. 2015), was
introduced that makes evidence calculation in hundreds of dimen-
sions a tractable process. The Polychord algorithm makes use of
‘slice sampling’ (Neal 2000). In one dimension, given a likelihood
L0, a point x is within the ‘slice’ if L(x) > L0. Starting from a seed
point x0, sampling boundaries are set by expanding a random initial
bound of width w until L(x0 ± w) < L0. A new point x1 is then ob-
tained within the slice by sampling uniformly within these bounds.
If x1 is not in the slice, w is decreased and x1 is drawn again from
these new bounds.

In d dimensions, Polychord first ‘whitens’ the parameter
space, performing a linear skew transformation which turns degen-
erate contours in the original parameter space into into ones with
dimensions O(1) in all directions. An initial live point is then cho-
sen randomly with coordinates in this whitened space given by x0.
A random initial direction is then chosen n̂0, and one dimensional
slice sampling is performed in that direction to generate a new point
x1. This process is repeated O(d) times to generate a new uniformly
sampled point xN which is decorrelated from the initial point x0.

In the analysis presented in this work we will be dealing with
models that have up to ⇠ 100 free parameters, as such Polychord is
a vital tool for performing robust model comparison in the profile
domain.

6 DATASET

We perform our analysis, and construct simulations that are based
o↵ the 10cm data set for PSR J1909�3744 that was previously pre-
sented in S15. Fig. 5 shows the post-fit residuals for the 322 TOAs
in this data set, observed with a total of 4 systems over the course
of 10.8 yr.

These data were recorded at a centre frequency of 3100 MHz,
with 512-1024 MHz of bandwidth. Over the 10.8 yr of observa-
tion, data were recorded with a number of di↵erent spectrometers.
The improved computing power of the later spectrometers enabled
the implementation of polyphase digital filters, and an increased
number of spectral channels and pulse phase bins. These data were
processed using procedures described in Manchester et al. (2013),
which we will describe in brief below, in order to draw comparison
with the methods presented in this work.

Individual observations were first averaged fully in both time
and frequency to form a single pulse profile for each observation.
Pulse TOAs were then measured by convolving model templates in
the Fourier Domain with the total intensity pulse profiles for each
observational epoch. Model templates were constructed by sum-
ming a series of von Mises functions, each of which is described
by 3-parameters, a phase, an amplitude, and a width. Initial guesses
for component locations, amplitudes and widths were added by eye
and then fitted using a non-linear algorithm. The residuals of the
fit were inspected to determine if the fit was good or if additional
components were needed, and the processes iterated upon until the
residuals appeared to have white-noise characteristics.

Because of its relatively simple morphology (Dai et al. 2015)
only three components were needed to model the pulse profile,
however, as in this work, the weak interpulse was not included in
the model. Templates were formed for each set of systems that had
markedly di↵erent backend architectures, in order to deal with pro-
file distortions that might arise from the time, and frequency sam-
pling for the di↵erent systems. Pulse-profile features narrower than
a pulse bin will be unresolved. Similarly, dispersive smearing can
broaden a pulse if frequency channels are wide (and, like the sys-
tems used here, coherent dedispersion is not employed) relative to
the intra-channel dispersion, however, consistent timing solutions

c� 0000 RAS, MNRAS 000, 000–000

Aasi et al. (LVC), PRD 85 082002 (2012)



Challenges - complex signal models
❖ Signal models are complex and  

expensive to evaluate numerically.

❖ Inference relies on approximations.

❖ Bias from approximation must be folded 
into parameter estimation results.

❖ One promising approach: Gaussian 
process regression.

❖ Building the Gaussian process model is 
challenging, and introduces additional 
parameters that must be estimated or 
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‘Big Data’ at the 
Large Hadron Collider 

Tim Scanlon 
University College London 

 

 



Large Hadron Collider 

13/01/16 2 

Study the fundamental particles and forces of the Universe 

Event = One bunch crossing 
Rate = ~40 MHz 

27km tunnel 
Protons accelerated 
to 0.999 x speed of light 

1 out of 10,000,000,000,000 collisions 
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Identifying a Higgs(?) Event 

3 

Muon 

Muon 

Electron 

Electron 

Identify then combine: 2 x Muons + 2 x Electrons  

x ~30 

1 out of 
10,000,000,000,000 
collisions 

Real 
data 

Simulated 
Events Challenge to identify the particles and events 
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Reconstructing a Collision 

4 

Vast ‘data-creating machines’ 
•  Size of a six storey building 
•  160M readout channels 
•  Creates 1 PB/s data 

First level filter keeps only ~1% of events 
 

Complicated algorithms reconstruct collisions 
•  Use 100k CPU farm at CERN 
•  Can take up to 20s CPU time 

Overall reduction in data by factor of 106…. 
... still huge volumes of data (1 GB/s) and events (~billions) 
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Worldwide LHC Computing Grid 
•  The data challenge 

Ø  30M GB of data per year from LHC 
Ø  Billions of events 
Ø  10,000 physicists worldwide 

§  Need real-time access to this data 
§  Shared computing resources 

 

•  Will only get worse in the future 

5 

Worldwide LHC Computing Grid 
Ø  42 countries 
Ø  170 computing centres 
Ø  2 million jobs run a day 

Outsourcing to home users! 

‘The most sophisticated data-taking and analysis system ever built for science’ 



Machine Learning (ML) 
•  Many challenges ideal for machine learning 

Ø  Identification of particles 
Ø Selection of signal events 
 

•  ML techniques used from 90s 
Ø Mostly Neural Networks (NN) and Boosted Decision Trees (BDT) 
Ø  Investigating newer techniques: Deep Learning NNs 
Ø  Tool kit: Use TMVA/Root framework 
 

•  Outsource to ML enthusiasts 
•  Discover more effective ML methods! 
•  Engage people in fundamental research 

12/01/16 6 

Widely used with large performance 
increases achieved 

1785 Teams 
1942 Players 
35772 Submissions 



Analysis Challenges 
•  Use ML to identify both particles and events of interest 

Ø  A lot of tuning: parameters, variables, algorithms etc. 
Ø  No data ‘standard candles’ for training/modelling – use simulation 

§  Need to ensure variables and correlations are well modelled 
§  Extra uncertainties 
§  Limited statistics 

 
 

 

 

•  Finally: advanced statistical techniques to quantify significances 
Ø  Profile likelihoods, Bayesian analyses 

12/01/16 7 

Categorise 
•  Signal 
•  Background 

Uncertainties on modelling 
of real data by simulation 

Cut Keep 

BDT Output 
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Summary 

8 

•  Many big data challenges at the LHC 
Ø  Huge amounts of data/events, complicated algorithmic problems, difficult 

classification problems 

•  Cutting edge tools adapted 
Ø  Worldwide LHC Computing Grid 
Ø  Complex reconstruction algorithms  
Ø  ML techniques 

•  Greater challenges ahead 
Ø  Data x 100 
Ø  Event complexity x10 
Ø  Ensure we fully exploit the data 

•  Collaboration between fields important to meet these challenge 
Ø  Share experience and expertise 
Ø  Common and improved tools 
Ø  Fully exploit cutting-edge techniques 

 

~200 collisions per event 



ATI Summit: Big Data in the Physical Sciences. Alan Turing Institute, 12 January 2016 

Many Data: few numbers 
Many Data: many numbers

Alan Heavens
Imperial Centre for Inference and Cosmology

Imperial College London



Data? Numbers?

✤ Framework:

✤ Data interpreted in context of a Model

✤ Model has parameters: these are the numbers

✤ We want to know the numbers



Many Data: few numbers

MRI scan:  

512x512x100  

26 million voxels
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✤ Model parameters: 3 rotations, 3 
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Many Data: few numbers

✤ Model: two volumetric images are 
(almost) the same, but rotated, 
shifted

✤ Data: MRI voxel intensities

✤ Model parameters: 3 rotations, 3 
translations 

MRI scan:  

512x512x100  

26 million voxels

Image Distortions  

✤ 26 Million Data: 6 numbers



Many Data: few numbers

✤ Model: two volumetric images are 
(almost) the same, but rotated, 
shifted

✤ Data: MRI voxel intensities

✤ Model parameters: 3 rotations, 3 
translations 

MRI scan:  

512x512x100  

26 million voxels

Image Distortions  

✤ 26 Million Data: 6 numbers

✤ MOPED algorithm (Heavens et al 2000) 

Compresses 26 million numbers into 
6 (or 12) with no loss of precision





Many Data: many numbers
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Many Data: many numbers

✤ Model: General Relativity ➣ Mass 
bends light
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Many Data: many numbers

✤ Model: General Relativity ➣ Mass 
bends light

✤ Data: image distortions (Millions)
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Many Data: many numbers

✤ Model: General Relativity ➣ Mass 
bends light

✤ Data: image distortions (Millions)

✤ Model parameters: mass distribution 
(>100,000 numbers)
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Many Data: many numbers

✤ Model: General Relativity ➣ Mass 
bends light

✤ Data: image distortions (Millions)

✤ Model parameters: mass distribution 
(>100,000 numbers)

✤ Bayesian Hierarchical Model 
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Many Data: many numbers

✤ Model: General Relativity ➣ Mass 
bends light

✤ Data: image distortions (Millions)

✤ Model parameters: mass distribution 
(>100,000 numbers)

✤ Bayesian Hierarchical Model 

✤ 10 candidate mass maps per second 
on a desktop
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Samples of the truth
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Conclusions

✤ Many Data: few numbers

✤ May be able to be analysed very efficiently when there is a 
good model for the data 

✤ MOPED

✤ Many Data: many numbers

✤ May be able to be analysed properly for the first time

✤ Bayesian Hierarchical Model
Alan Heavens  a.heavens@imperial.ac.uk



Analysing	data	from	Large	N	
permanent	seismic	sta3ons	to	
monitor	subsurface	processes	

Sjoerd	de	Ridder	and	Andrew	Cur3s.	

1	1/11/16	 ATI	Summit:	Big	data	in	the	physical	sciences,	London,	January	13th,	2016	



Big	data	science	key	to	observe	and	
monitor	the	Earth	in	real-3me	

2	1/11/16	 ATI	Summit:	Big	data	in	the	physical	sciences,	London,	January	13th,	2016	

Big	data	and	GeoSciences	

Take	Home	Message	



Seismograph	Sta3on	

3	



4	

IRIS	Data	Center	Real-Time	Feeds	

over	20.000	sta3on	loca3ons	in	the	past	5	decades	



5	

IRIS	Data	Center	Real-Time	Feeds	

over	20.000	sta3on	loca3ons	in	the	past	5	decades	

•  ~	5000	sta3ons	

•  ~	250GB	per	day	
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Big	Data	in	Seismic	Industry	

Courtesy	of	DWTship	
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Big	Data	in	Seismic	Industry	

Courtesy	of	DWTship	

•  Latest-technology	3D	boats	
have	~	100K	sensors	
recording	~	20	TB/day	

•  There	are	~	90	3D	boats	
opera3onal	in	the	world	

•  Similar	quan33es	of	data	are	
recorded	on	land	



TerraCorrelator	Facility	

8	

•  Seismic	noise	correla3ons	for	
imaging	of	earth	proper3es.	

•  Earthquake	repeater	analysis,	for	
volcano	and	plate	boundary	study.	

 è  Real-3me	risk	assessment	
	 	 	with	seismic	data.	
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•  Pre-Processing	of	Recordings		–			one	sta3on	at	a	3me	
•  Travel	3me	Computa3ons								–			two	sta3ons	at	a	3me	
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TerraCorrelator	Facility	

21	

	

•  2	nodes	with	4	Intel	Xeon	E7-4830	8	core	
processors,	and	2TB	RAM.	

•  2	fileservers:	208	TB.	
•  1	fileservers:	28	TB	high-performance	SAS.	



TerraCorrelator	Facility	
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•  	Can	handle	up	to	1000	sta3ons	

	

•  2	nodes	with	4	Intel	Xeon	E7-4830	8	core	
processors,	and	2TB	RAM.	

•  2	fileservers:	208	TB.	
•  1	fileservers:	28	TB	high-performance	SAS.	
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Vision:	A	Future	of	seismology	in	ATI	



24	over	20.000	sta3on	loca3ons	in	the	past	5	decades	
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Data science challenges and solutions in 
Astrochemistry 

Serena Viti 
Department of Physics and Astronomy 
UCL 



Molecular observations and interpretation: 
The canonical approach and its limitations 



This 4-step procedure highlights the inverse nature of 
the problem ! deriving information about molecular 
clouds using observational information and, even well 
established modelling codes, is an inverse problem 
that usually does not fulfil Hadamard's postulates of well 
posedness i.e: 
 
•  it may not have a solution 
•  solutions might not be unique and/or might not 

depend continuously on the observational data.  
 
! We have to deal with non-linear ill-posed inverse 
problems.  











The first two 
proof of concept 
projects led to 
over a million 
chemical models 
(Makrymallis et 
al. 2014, 2016)   
 
 
This analysis led 
to a potential 
breakthrough in 
the way 
experimentalist 
astrochemists 
approach the 
problem of 
surface 
reactions.  
 
e.g. 15 out of 23 
reactions are not 
needed  



Aims  

•  Need to 
–  Maximise the number of models we can run ! 

essential for the accuracy and validity of statistical 
inferences 

–  Perform rapid testing 
–  Perform large scale sensitivity analyses 

•  In order to do that, we need to: 
–  Perform innumerable simulations over a very large 

parameter space, generating a combinatorial explosion 
of model runs and large, high-dimensional data sets.  



Generating Insight from Big 
Data in Energy and the 

Environment!
David Wallom!
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Scale&ma#ers''
for!problems!and!solu4ons!!

in!the!built!environment!

“stock” at the city, national, international scale 

The building 
(or leaseable unit) 

The Challenge 
•  In UK, £1.7 Bn of energy 

consumed is not managed  
•  Large businesses waste around 

15% of energy due to lack of 
efficiency measures & 
understanding 

•  £5Bn spent on new buildings 
each year, which use 2 to 3 times 
more energy than designed 
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Energy!usage!in!retail!premises!
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Clustering!electricity!load!profiles!using!

Bayesian!clustering!on!domes4c!energy!

consump4on!

Data from EC FP7 DEHEMS 
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Clustering!electricity!load!profiles!using!

Bayesian!clustering!on!domes4c!energy!

consump4on!

Examples:  
A black box tamper: A device, 
often concealed in a black box 
(hence the name), is fitted to an 
electricity meter to either stop 
the index, slow it down or even 
reverse the reading.  
Index Tamper: Directly altering 
the recorded total consumption 
via meter breach 
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Normalised daily 
power demand 
profiles for all 
businesses by sector 
(Top Level SIC 
Classification) 

Commercial!energy!consump4on!and!real!4me!

pricing!

!  Analyse!the!impact!of!introduc4on!of!4me?of?use!and!real?

4me!pricing!strategies!

Data from Opus Energy Ltd 



W I CK 
ED 

http://www.energy.ox.ac.uk/wicked/ W I CK 
ED 

Commercial!energy!consump4on!and!real!4me!

pricing!

!  Analyse!the!impact!of!introduc4on!of!4me?of?use!and!real?

4me!pricing!strategies!



W I CK 
ED 

http://www.energy.ox.ac.uk/wicked/ W I CK 
ED 

!  Turning!Data$into$Ac*onable$Informa*on;!!
!  Predic4ng!and!classifying!costs!with!a!shiD!in!tariff!type,!e.g.!shiDing!
to!a!real?4me!tariff!from!a!fixed!price!tariff,!

!  Clustering!of!load!profiles,!determining!behaviour!type!and/or!

consumer!response,!detec4ng!energy!theD!

!  Determining!fundamental!drivers!of!energy!consump4on!and!

improving!understanding.!

!  Create!commercial!value!



The weather@home regional modelling project 
!

•  High!impact!weather!events!

are!typically!rare!and!

unpredictable.!

–  Flooding!
–  Heatwave!
–  Drought!

•  They!also!involve!small!

scales.!

•  Resolu4on!provided!by!
nested!regional!model.!

•  Modify!boundary!condi4ons!

to!mimic!counter?factual!

“world!that!might!have!

been”.!



UK!Winter!2014!Floods!

•  39726!simula4ons!

•  2014!flooding!described!as!
a!1!in!100!year!event!in!

terms!of!rainfall!volume!

•  Return!4me!plot!shows!this!

has!become!a!1!in!80!year!in!

terms!of!risk!



UK!Winter!2014!Floods!

•  39726!simula4ons!

•  2014!flooding!described!as!
a!1!in!100!year!event!in!

terms!of!rainfall!volume!

•  Return!4me!plot!shows!this!

has!become!a!1!in!80!year!in!

terms!of!risk!

•  Risk!of!a!very!wet!winter!
has!increased!by!25%!

(Schaller!et!al,!Jan!16,!NCC)!

!



World!Weather!Adribu4on!




