Seismic tomography:
a geophysical inverse problem featuring
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On their way from earthquakes to seismological stations,
seismic waves sample the earth’s interior. The 3-D structure of
the interior can be inferred if enough wave paths cross at depth.

Blue: moderate to large earthquakes from 1999-2010.
Red: seismic stations that recorded them.
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Seismic waves sample an almost spherically symmetric planet

Simulated wave propagation, 6 minutes after an ...but we are interested in the weak
earthquake at the North Pole. Spherically lateral deviations that occur in reality.
symmetric models are very decent Elastic moduli and wave velocities
approximations... vary by a few percent.

Inversion for weak 3D heterogeneities = a linearizable inverse problem



Wavefield ~15 min after earthquake at North Pole

Energy travels in wave packets
(“seismic phases”).

When a phase hits a discontinuity
(e.g. the surface), it spawns sever
more phases.

By now, a station here has
recorded many different phases

What can be inferred about
earth structure?
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The inverse problem: How do traveltime measurements (for
phases P, PP,...) sense the structure of the mantle?
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Sensitivity K, of a P-wave traveltime
measurement d, to velocity variations
dv/v in the earth’s mantle.




Inversion result: 3D variations in seismic wave velocity
(a proxy for mantle temperature)
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Example: 3-D mapping of seismically fast domains in the mantle.
Piles of ancient seafloor (lithosphere) that have been sinking back into
the mantle over the past 100-200 million years.
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Radio waves will be delayed by dispersion effects in the
Interstellar medium; larger distance = larger delays
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Antoniadis et al.



main properties of pulsars

e 1.2 to 2 Solar masses of dense nuclear matter, spinning
with periods between milliseconds and several seconds

e diameter of a medium sized town

e superfluid interior surrounded by crust

e super-strong surface magnetic field 10'° Gauss

* co-rotating charged magnetosphere & light cylinder
* high energy streaming plasma

* radio, optical, Gamma-ray, X-ray emission

e (Gravitational wave radiation



Observing pulsars

point your telescope

Power (f,t)

frequency

time

apply differential frequency delay

Fold at known pulsar period
or search for period



data rates

e Typical observations take place around 1 GHz or ~30 cm
e Pulsar signals are bright across the 30 MHz to 5 GHz range

e Radio telescopes in this range typically sample a bandwidth of 0.5
the observing frequency

e 500 MHz of bandwidth require a sampling rate of 1 Gsample/s

e For interferometry, multiply that rate by the number of tied-array
beams

e Example: 1000 tied array beams produce 1 Tsample/s or 1-4 TB/s for
8 to 32-bit sampled data

e Data rate reduction by choosing appropriate time-frequency
resolution

e Data rate reduction by integration, after considering the physical
properties of the observed signal, depending on objectives
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“raw’’ data for PSR B1913+16
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Algorithms to Architectures
Juha Jaykka (jj411@cam.ac.uk)
University of Cambridge, UK
London, 2016-01-13
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COSMOS Intel Parallel Computing Centre

» optimise, modernise, design, make sustainable research software
» intimate link between hardware, algorithms, software

» excellent link with Intel, collaborating in all aspects of software
development and two-way exchange of ideas and knowledge

» actively engaged with vendors (mostly SGI, Intel) designing new
systems (e.g. the MG Blade)

» 3.5 (research) software engineers working as part of research groups

» awarded the HPCwire Readers’ Choice Award (Best High
Performance Data Analytic) 2015
[J.P.Briggs et al in “High Performance Parallelism Pearls”, vol 2,
171-190, Morgan Kaufman, Boston, 2015; arXiv:1503.08809]

Best Use of

Readers’ Choice
Awards
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Confrontation of Observation and Theory
Cosmology
cosmic microwave background (Planck), large scale structure (DES)

gravitational waves (aLIGO), cosmic defects

also needs some traditional HPC for solving PDEs numerically

vV v vv

all either create and process or just process very big datasets

Astrophysics

» solar atmosphere and interior simulations

» investigations of evolution of protoplanetary disks

In all this data sizes are big enough that

» movement of data must be either avoided altogether or carefully
orchestrated (= tightly-coupled heterogeneous systems)

» processing efficiency is paramount: the work that led to the
HPCwire award, provided an increase of two orders of magnitude

» importantly, one order of mag from choosing the appropriate
Algorithm to Architecture



Future Challenges

Computing Hardware Becoming Harder to Use Efficiently

| 2

>

challenging nested parallelism (vector, threads, processes)

multi-level memory hierarchy: registers, caches, fast RAM (on-chip
HBM), slow RAM (classic DRAM), distributed off-node RAM, etc

widening vector units and many-core architectures

non-SIMD CPU performance hasn't really increased since 2008 or
earlier; GPU even more disruptive to codes than SIMD

many codes have reached their scaling limits: cannot simply add
nodes to increase performance either

increasing imbalance between non-volatile 10, memory 10 and GF/s

Rapidly Increasing Size of Data

>

>

>

cannot really move around any more
often needs to be post-processed (visualised) remotely (OSPRay!)
or even on-the-fly/in-situ: throw away uninteresting data like LHC



Research Software in the Future

Co-design Hardware and Software

Alan Turing was a co-designer (Bombe to break Enigma)
co-design useful for both CPU, many-core, and GPU codes
need to engage more specialised (research) software developers

COSMOS was involved in co-designing with SGI the "MG-blade" for
Intel Xeon Phi co-processors and GPUs in SGI UV2000 systems

» currently involved in the design of an advanced hybrid "co-cluster"

vV v v vy

» helps early adoption of new hardware

Productivity of Big Data Analysis and Computing

typical HPC software isn't the easiest to use or maintain
easy to use tends to be inefficient (1st vs 100th solution)

involve software engineers to combine ease of use and efficiency

vV v v v

workflow management tools can address workflow inefficiencies



Algorithms to Architectures

» Develop architecture-aware and architecture-specific algorithms to
process Big Data and simulate faster
> not just bigger data and bigger simulations but also present size
more energy efficiently and faster (not necessarily the same thing)
> Design to preserve data locality through in-situ and on-the-fly
post-processing
» COSMOS IPCC participates in the development of Intel's OSPRay
in-situ visualiser, HAM offload library, etc
» Engage with hardware vendors and co-design heterogeneous systems
to ensure early adoption of next generation hardware
» Broader impact through public release of world-leading data analytic
parallel software packages
> use standards (Fortran, C, C4++, OpenMP, OpenCL etc) to ensure
portability
» Other external impacts
» 1SC2015 OSPRay visualisation demo with Planck data (first public
demo of KNL)
» Big Data real-time visualisation demo at SC2015 with 10TB Walls
data

» Multi-disciplinary interactions essential to reach full potential



Big data problems for transient sky

surveys in astronomy
S.J. Smartt, Ken Smith, Darryl Wright, D.Young (Queen’s University
Belfast), K. Chambers, M. Huber, E. Magnier, J. Tonry, L. Denneau, B.
Stalder, A. Heinze ++ (IfA, Hawaii)

LSST : Large Synoptic
Survey Telescope
(2020-2030)

Pan-STARRS + ATLAS (now
- 2020+)

“

PS1 Science Consortium




Big data problems for transient sky
surveys in astronomy

Image recognition : real/bogus and rapid
astrophysical classification (1-10TB image data

per day)

Massive database : | billion objects, 10000
measurements over 5 yrs (indexing, database
partitioning, database architecture)

Turn around speed :insert 64000 per sec into
database (24hr spread). Index and association
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Difference images - to find transient and variable

SOUrces

home confirmed good possible attic eyeball garbage custom Find Object

Confirmed SNe
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Example of current data rate processing

Average number of detections per day in PanSTARRS ~ 10 million
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|. Image recognition : machine learning

Random Forest Classifier, neural
networks, support vector
machines

Receiver Operating
Characteristic curve

Image input - which are
real, which are not?
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Working in real time now, but two problems
* Have hit floor in performance for 1% FPR : can’t do better than

5-10% MDR
 Astrophysical classification, once we decide REAL/BOGUS

Machine learning for transient discovery in
Pan-STARRS1 difference imaging http.//star.pst.qub.ac.uk/ps 1threepi/psdb/
D. Wright et al. MNRAS, 2015, 449, 451



2. Massive databases

ATLAS (2 x 0.5m telescopes, 20 mag, all-sky 2-4 times
per night)

® Object: 100 bytes (conservative! FP number 4 bytes,
double=8 bytes. Excluding indexes, overlapping partitions.)

® | x 107 sources
® | x 102 detections per yr
® |00 TB database per yr (x 2-3 for backup)

Large Synoptic Survey Telescope
® 40 x 107 sources (after Year |)

® | x 10'2detections per yr
® |00TB database per yr (but 10 yr rolling project,
and “forced” measurements. Final = | 5PB)



Big data problems for transient sky
surveys in astronomy

“Small projects” now producing big data and
associated problems

UK will play major role in LSST : both image
analysis, classification and database architecture
unsolved (LSST developing gserv)

Speed :insert 64000 per sec into database (24hr
spread, so probably worse). Need to rapidly
index and associate, and be querying at same

time (support multiple users)



Compute and Data-Intensive Simulations,

Error Analysis & Control in the

Chemical Sciences

Peter Coveney
Centre for Computational Science,
Department of Chemistry,
University College London

Alan Turing Institute Summit
13 January 2016



Predictions from Single Simulations

Computational Application to Drug Affinity Ranking
— Single MD simulation

SINGLE MD
o o
Q O 5|
PROTEIN o r
0000 2 (®
‘ ‘ ‘ Q | AGIExperimcm
DRUGS

Errors uncontrolled
Results unreproducible



Predictions from Ensemble Simulations dh

Computational Application to Drug Affinity Ranking
— Ensemble Simulations

ENSEMBLE MD

cleield
paoan B
PROTEIN LDEIEIM - _—
O 33N |
DRUG ANeolvie 3| '_
: | AGIExperimem

° Errors fully under control;

. Results reproducible.
‘ (Data from Bcer-Abl kinase

ligand binding.) 3



Single vs Ensemble MD Simulations -

The binding free energy can vary widely (up to 12 kcal/mol) between two single
simulations.

Single simulation: not reproducible, unscientific!
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Binding Affinity — Data Intensive Workflow

Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) & Entropy Calculation

1 PDB Forcefield Generic Topology Binding Free Energy

* Data

Simulation-Ready Model

MMPBSA Calculation 5

Eq1 4 Nmode Calculation

Production Trajectories

t ¢+ t

Eqn Sim 1 Sim 2 Sim3 | - Simp

NSZNCZN\G/a N\ e

1. Model preparation; 2. Equilibration; 3. Production; 4. Free energy calculation;
5. Analyses and results  Applications used include: NAMD, CHARMM, AMBER, VMD. ..

S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, lleana, and P. V. Coveney, 5
Journal of Chemical Information and Modeling, 48, (9), 1909-1919 (2008)

Ensemble
size p




Calculating Clinically Relevant Binding Affinities

FDA-approved drugs to wild-type HIV-1 protease

C”Efé; B %@fj SN fgg@/ This work used s_everal of the most powerful
: ° supercomputers in the USA, UK, and EU.
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Wright, DW, Hall, BA,Kenway, OA, Jha, S and Coveney, PV, "Computing Clinically Relevant Binding Free
Energies of HIV-1 Protease Inhibitors.” J. Chem. Theory Comput., 2014, DOI: 10.1021/ct4007037



Ranking of p-MHC Binding Free Energies =

The influence of ensemble size on the reproducibility

» Larger sizes of ensemble make rankings more reproducible and with
lower standard deviations.

» One should use ensembles containing a minimum of 25 replicas per
ensemble to provide reproducible results.

a) I-trajectory study b) 3-trajectory study
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S. Wan, B. Knapp, D. Wright, C. Deane, P. V. Coveney,
J. Chem. Theory Comput. 11 (7) 3346-3356 (2015) 7



Euclid

Europe's Next Space-Based
Cosmology Experiment

Tom Kitching (UCL MSSL) — Euclid Science Lead



What is the Universe made of?

* Euclid is designed to to
decisively answer this
guestion

» Explanations require
either:

— Changing general
relativity

— A new fundamental field
(like the Higgs)

74% Dark Energy

4% Atoms

— Multiverse



 Due to launch in 2020

What is Euclid ? |

« UK leads Science,
Data Processing &
Engineering aspects

» Product: Hubble-Space
Telescope quality
images over 75% the
available sky over 75%
the age of the Universe
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» The largest CCD array ever flown in space

» 36 4k x 4k chips
* Need 36 stacked HD TVs to display one image

* Euclid will make one image every 5 minutes
continuously for 6 years



Big Simulations

* Only have one Universe
* SO need to re-run the experiment in simulations

« Require > 10° Universe simulations

* Hundreds-thousands of PB required



Total Science Storage Requirements
10000

1000

100

Cumulative Data Volume/TB

(WY
o

IR

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

—=Secondary

—=Simulations



 Euclid will observe:

/5% of extragalactic sky
over /5% the age of the Universe

» Designed to determine nature of dark energy
« Big Data, Big Simulations

* Big Opportunity for UK & the AT



Efficient Massive-Scale Graph Processing

Eiko Yoneki
eiko.yoneki@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~ey204

Systems Research Group
University of Cambridge Computer Laboratory



Emerging Massive-Scale Graph Data

- \/“' =@ Brain Networks:
=" 100B neurons(700T

' M links) requires 100s
GB memory

tumor specimens

Bipartite graph of

phrases in
documents [
‘ Web 1.4B
Protein Interactions Social media data pages(6.6B
[genomebiology.com] links)

Airline Graphs



Everything will be connected in Future!




"Data-Parallel vs Graph-Parallel

= Big data forms complex networks: key to solve problems
in diverse fields

= Web 1.4B pages + 6.6B links; Brains 100B neurons + 700T links
- 100s GB of memory

= Data-Parallel for everyone? Graph-Parallel is hard!
= Only for big players with HPC/Large Clusters?

Data-Parallel Graph-Parallel

Table /

+ 3

| = BSP: Pregel, Giraph,
Dependency Graph Graphlab

= Unifying graph- & data-
parallel: GraphX/Spark

= Data-flow programming:
NAIAD, DryadLINQ

!
" - “

3



ﬁ Data: Scale-Up vs Scale-Out

= Popular solution for big data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

= Scale-up: add resources to single node in system (e.g. HPC)
= Scale-out: add more nodes to system (e.g. Amazon EC2)




| we really need large clusters?

= | aptops are sufficient

Twenty pagerank iterations

System cores twitter_rv uk_2007_05
Spark 128 857s 1759s
Giraph 128 5965 1235s
GraphLab 128 Caags ) 833s
GraphX 128 419s 462s)D
B [Single thread 1 C300sD E 651sD

Label propagation to fixed-point (graph connectivity)

System cores twitter_rv | uk_2007_05
Spark 128 1784s 8000s+
Giraph 128 200s 8000s+
GraphLab 128 242s 714s
GraphX 128 251s 800s
BB [Single thread 1 C153sD C417sD

from Frank McSherry HotOS 2015

(Fixed-point iteration \

All vertices active in
each iteration
(50% computation, 50%

kcommunication) y

fTraversaI: Search
proceeds in a frontier
(90% computation, 10%

communication)

\




Bring Big Data Processing to Single Computers

= Use of powerful HW/SW parallelism
= SSDs as external memory
= CPU/GPU integrated heterogeneous many core architecture

= Open up massive graph processing to everyone

CPU|CPU CPU| -
Multi-core

« Amdahl's
law

NS S S NS X
° o ° Y o
R R R

i id lid Vigd

Cluéter

D/SSE

CPU —
(External Memory)
7

+ multiple GPU
Clusters




j Computation Challenges

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, pattern)
3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD) Yy

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

= Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

= High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to
computation ratio



"Research Vision: S ynthesis of Entire Stack

(u Algorithms, S/W and H/W for mainstream parallel approaches are not

effective for more complex structured data from real world

Data and algorithms dictate complex & irregular graph data processing:
Utilise systems’ parallelisms and resource coordination - no burden of
algorithm implementation Y

Close gap between domain algorithms and systems research

Programming paradigm and model (runtime, algorithmic, query layer...)
= Opening up fresh research areas such as algorithm independent optimisation

Exploit different parallelism at different scales (SSD, CPU/GPU) A

Map input data structure and algorithms onto processing model

Auto-tuning structured Bayesian optimisation for dynamic scheduling
= Complex decision making, and resource provisioning in complex parameter space )

Inter-disciplinary approach required
(distributed systems, algorithms, statistics, computer architecture, database...) 8



" Big Data: Technologies

» Distributed infrastructure

= Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App
Engine, Elastic, Azure)

cf. Multi-core (parallel computing)

= Storage

= Distributed storage (e.g. Amazon S3, Hadoop Distributed File
System (HDFS), Google File System (GFS))

= Data model/indexing

= High-performance schema-free database (e.g. NoSQL DB - Redis,
BigTable, Hbase, Neo4J)

= Programming model
= Distributed processing (e.g. MapReduce)



Big Data Analytics Stack

Algorithms, Data Data Structure,

Access Patterns

¥

Query

Workload

ML framework (e.g. Tensorl*

Language Machine learning

Streaming
Processing

Storm, S4, SEEP
Dstream, Naiad

Pig, Hive, Shark
Meteor, SCOPE
DryadLINQ

Mahout, MLBase
SystemML, Presto

Execution Engine

NAIAD

MapReduce, Dryad, Spark
Nephele/PACT, Hayracks

Percolator

Graph
Processing

Pregel, GraphLab
Bagel, GraphX
Giraph
Unicorn

Resource Manager

Mesos, YARN

BigTable, Hbase, Dynamo
Cassandra, MongoDB, Voldemort

Storage
HDFS GFS Spanner Dremel

Database

10



Data Centric Approach for Big Data Generation

= Data is a token in programming flow and networking, and
impacts computer system's architecture

Data analytics KRERL
(clustering, < ”" : .
orithms for parallelism
ML, NN... ) g P

(Optimisation, sampling,
approximation..)

Basics of Statistics Data Centric
(Linear regression, Systems and
dimension reduction Networking

Auto-tuning
(Decision tree,
probabilistic influence,
Bayesian opt...)

¥ Graph/Network
"4 (graph theory,
ML...)

Distributed computing
Concurrent programming
) vectorisation, memory,
- multi-core...)

11



Challenges in data analysis for
gravitational wave detectors

Jonathan Gair, School of Mathematics, Univ. of Edinburgh,
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Gravitational wave detectors

A major international etfort is underway to
detect gravitational waves (GWs) for the
first time.

A ground-based network ot kilometre-scale
interferometers (LIGO, Virgo etc.) is in the
middle of its first observing run with
“Advanced” sensitivity.

Radio telescopes are hunting for nanohertz
GWs through precise timing of arrays of
millisecond pulsars (PTAs).

A million-kilometre interferometer in space
(eLISA) will be launched by ESA as the L3
mission in the Cosmic Vision programme.




Challenges in data analysis

» These are new experiments and therefore pose new challenges.

» The raw data is not as “big” as that from some other experiments

- LIGO/ Virgo sample at ~4kHz over ~month to ~year observing runs.
Terabytes of data from each observing run.

~ eLISA will have a much smaller sampling rate (~1Hz) and therefore
three orders of magnitude less data.

~ The data used for GW analysis with PTAs are the residuals for each
of ~50 pulsars, measured every ~2 weeks over ~10 years.

Challenges arise from the complexity of the data and the expected
signals.



Challenges - large parameter spaces

Many searches are performed on LIGO data,
targeted at different source classes

Low-latency for rapid follow-up.

Modelled sources - binaries of different
types, continuous waves etc.

Un-modelled sources (bursts), both
targeted (GRBs or SNe) and un-targeted.

Stochastic background.

The eLISA data will contain thousands of
sources that overlap in time and frequency,
creating a confusion problem.

Each source is characterised by ~10
parameters that must be estimated.



Challenges - noise characterisation

107 F

The statistical properties of the noise in .
GW detectors is poorly understood. o

10"}

Rate (vr ')

Background typically estimated by - o] |

“timeslides”. Need to repeat analysis g w0

many times to reach desired O e pe \ft \
significance level. o — 12 § 5

, Aasi et al. (LVC), PRD 85 082002 (2012)
For PTAs, data is collected over many —
years with many different instruments l
that have different noise properties. . l A Pﬂ

1078

r il
Need to fold noise measurement | H
uncertainty into parameter estimation. ‘

10
o
Sk
o
OA

PR
OOOOO
55555555555



Challenges - complex signal models

Signal models are complex and
expensive to evaluate numerically.

Inference relies on approximations.

Bias from approximation must be folded
into parameter estimation results.

e . SNR = 16, typical
One promising approach: Gaussian o oA
process regression.

Building the Gaussian process model is
challenging, and introduces additional
parameters that must be estimated or

marginalised over. 0.0-

Normalised likelihood

5036 5.038 5040 5.042 5.044 5046 5.048 5.05(
Mc / Mm



‘Big Data’ at the
Large Hadron Collider

Tim Scanlon
University College London




Large Hadron Collider

Study the fundamental particles and forces of the Universe

27km tunnel
= A —S Protons accelerated_
to 0.999 x speed of light

Bunch Crossing 4107 Hz

Proton Collisions 109Hz\ Event = One bunch crossing

- - Parton Collisions Rate = ~4O MHZ
B8 < . _ 5
New Particle Production 10 Hz@ 1 out of 10,000,000,000,000 collisions

(Higgs, SUSY, ....)

13/01/16 2



Identifying a Higgs(?) Event

HIGGS BOSON

Identify then combine: 2 x Muons +

089‘ Electrolﬁ%

Dack
’ e, ............O
4 - B ™ L(GHT
' / y
r 4 41 4 F ¢

o » ¥/ / N ’

A=Y J o 5

»

Wool felt, velour with gravel
Jor maximum mass. woe

> r

§ wf oo farias

§ F m,=1 gzgt.a GeV (fit) H—-ZZ"—4l 4
5 35 ] Bakgrondz, 22 Vs=7TeV |Ldt=461 )
w C [ Background Z+jets Vs=8TeV J.Ldt =207

w
o

1 out of %,
10,000,000,000,000<>
collisions

T %% Syst.Unc.

Real
data

Electron i
100 150 fo o [Ge\zliso
_ _ - Simulated
12101116 Challenge to identify the particles and events Events




Reconstructing a Collision

2 Detector characteristics
Muon Detectors <‘ 7 | Width: 44m

Electromagnetic Calorimeters
A = \ : Diameter: 22m
/\ \ < ﬁ Weight: 7000t
/ Solenoid ‘\‘\\ CERN AC - ATLAS V1997

Forward Calorimeters
End Cap Toroid

Vast ‘data-creating machines’
» Size of a six storey building
« 160M readout channels
 Creates 1 PB/s data

CMS Experimeqt &t the\HC, CERN|, * ¥
Data recorded: 2040-Noy-1948°37:44.420271 GMTF§37:44 GEST) N0/ |
Run/ Event: 151076 %4205388 %, . « - ¥ |

.
Barrel Toroid Inner Detector . . -
I Hadronic Calorimeters Shielding

First level filter keeps only ~1% of events

Complicated algorithms reconstruct collisions
« Use 100k CPU farm at CERN
« Can take up to 20s CPU time

Overall reduction in data by factor of 106....

... still huge volumes of data (1 GB/s) and events (~billions)
12/01/16 4




Worldwide LHC Computing Grid

 The data challenge

» 30M GB of data per year from LHC
> Billions of events

> 10,000 physicists worldwide

= Need real-time access to this data
= Shared computing resources

unning jobs: 214268

@ Worldwide LHC Computing Grid
» 42 countries

» 170 computing centres

» 2 million jobs run a day

Outsourcing to home users!

b, LHCThome

2 It ‘

US Dept r § ‘
o L5} Google earth
aaaaaaaaaa NGA, GEBCO

‘The most sophisticated data-taking and analysis system ever built for science’
12/01/16

S)



Machine Learning (ML)

« Many challenges ideal for machine learning

» ldentification of particles Widely used with large performance
» Selection of signal events increases achieved

» Mostly Neural Networks (NN) and Boosted Decision Trees (BDT)
» Investigating newer techniques: Deep Learning NNs

> Tool kit: Use TMVA/Root framework ITMVA

 Qutsource to ML enthusiasts
 Discover more effective ML methods!
« Engage people in fundamental research

Hi9gsI the HiggsML challenge IS6sdisa

challenge 1942 Players
R R > <0 35772 Submissions

When High Energy Physics meets Machine Learning

12/01/16 6



Analysis Challenges

* Use ML to identify both particles and events of interest
> A lot of tuning: parameters, variables, algorithms etc.

» No data ‘standard candles’ for training/modelling — use simulation
= Need to ensure variables and correlations are well modelled

= Extra uncertainties S 104:_'A'TL;4§ Preliminary  * Eétalzlmsl -
. _r = 1975 - b jet
= Limited statistics g TV e B
- 103;_ Light-flavour jet
Categorise ek Cut | Keep
- Signal
105—
5 155 B —
Uncertainties on modelling | & == _+__ ==
of real data by simulation | § © =i —
0.5 | | | E
1 05 0 05 1

BDT Output
« Finally: advanced statistical techniques to quantify significances

> Profile likelihoods, Bayesian analyses
12/01/16



Summary

» Huge amounts of data/events, complicated algorithmic problems, difficult

classification problems

Cutting edge tools adapted
» Worldwide LHC Computing Grid
» Complex reconstruction algorithms
» ML techniques

Greater challenges ahead
» Data x 100
» Event complexity x10
» Ensure we fully exploit the data

~200 collisions per event

ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <p>=200

Collaboration between fields important to meet these challenge

» Share experience and expertise
» Common and improved tools

> Fully exploit cutting-edge techniques
12/01/16

THE ALAN
TURING
INSTITUTE




Imperial College Ilc I El

London

Many Data: few numbers
Many Data: many numbers

Alan Heavens

Imperial Centre for Inference and Cosmology

Imperial College London

ATI Summit: Big Data in the Physical Sciences. Alan Turing Institute, 12 January 2016



Data? Numbers?

+ Framework:

+ Data interpreted in context of a Model
+ Model has parameters: these are the numbers

+ We want to know the numbers



IcIC!
Many Data: few numbers

MRI scan:

512x512x100
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IcIC!
Many Data: few numbers

g MRI scan:
+ Model: two volumetric images are

(almost) the same, but rotated,
shifted

512x512x100

<« Data: MRI voxel intensities

+ Model parameters: 3 rotations, 3
translations

<« 26 Million Data: 6 numbers




IcIC!
Many Data: few numbers

g MRI scan:
+ Model: two volumetric images are

(almost) the same, but rotated,
shifted

512x512x100

<« Data: MRI voxel intensities

+ Model parameters: 3 rotations, 3
translations

<« 26 Million Data: 6 numbers

+ MOPED algorithm (Heavens et al 2000)
Compresses 26 million numbers into
6 (or 12) with no loss of precision
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+ Model parameters: mass distribution
(>100,000 numbers)
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ICIC
Many Data: many numbers

+ Model: General Relativity - Mass
bends light

+ Data: image distortions (Millions)

+ Model parameters: mass distribution
(>100,000 numbers)

+ Bayesian Hierarchical Model

+ 10 candidate mass maps per second
on a desktop




Samples of the truth

Simulated map Noisy masked map Posterior samples
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ICIC
Conclusions

+ Many Data: few numbers

+ May be able to be analysed very efficiently when there is a
good model for the data

+ MOPED

+ Many Data: many numbers

+ May be able to be analysed properly for the first time

+ Bayesian Hierarchical Model
Imperial College

Alan Heavens a.heavens@imperial.ac.uk London



Analysing data from Large N
permanent seismic stations to
monitor subsurface processes

Sjoerd de Ridder and Andrew Curtis.

1/11/16 ATI Summit: Big data in the physical sciences, London, January 13th, 2016 1



Take Home Message

Big data and GeoSciences

Big data science key to observe and
monitor the Earth in real-time

1/11/16 ATI Summit: Big data in the physical sciences, London, January 13th, 2016 2
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Courtesy of DWTship



= Latest-technology 3D boats
have ~ 100K sensors
recording ~20 TB/day

e Similar quantities of data are
recorded on land

Courtesy of DWTship




TerraCorrelator Facility

e Seismic noise correlations for
imaging of earth properties.

* Earthquake repeater analysis, for

volcano and plate boundary study.
. : PhNodeOZ
= Real-time risk assessment 1 i o] S
with seismic data. : "E _”
20
e
HIH
HES



TerraCorrelator Facility

Seismic noise correlations for
imaging of earth properties.

* Earthquake repeater analysis, for
volcano and plate boundary study.

P Phi Node 01
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A Seismic Stations

. Az

Courtesy of Erica Galetti, UoE

Group velocity (km s™)
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A Seismic Stations
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A Seismic Stations
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A Seismic Stations

Map of Wave Velocities
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* Pre-Processing of Recordings — one statlon at a time




A Seismic Stations
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A Seismic Stations
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A Seismic Stations

Map of Wave Velocities
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A Seismic Stations Map of Wave Velocities
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* Pre-Processing of Recordings — one statlon at a time
* Travel time Computations — two stations at a time




A Seismic Stations Map of Wave Velocities
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* Travel time Computations — two stations at a time




A Seismic Stations Map of Wave Velocities
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* Pre-Processing of Recordings — one statlon at a time
* Travel time Computations — two stations at a time
* Tomographic Computation — all stations simultaneously




TerraCorrelator Facility

e 2 nodes with 4 Intel Xeon E7-4830 8 core
processors, and 2TB RAM.

e 2 fileservers: 208 TB.

e 1 fileservers: 28 TB high-performance SAS.

24 1958 3lpp3

l Big Data Store I




2 nodes with 4 Intel Xeon E7-4830 8 core
processors, and 2TB RAM.

2 fileservers: 208 TB.

1 fileservers: 28 TB high-performance SAS. i oo
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Can handle up to 1000 stations
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Vision: A Future of seismology in ATI
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;Z@ e ~100.000 stations to cover the continents

“21e ~200.000 stations to cover the oceans
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== * ~100.000 stations to cover the continents 4
1+ ~200.000 stations to cover the oceans

| =» -~15TB/day 3
* Industry has a 1.000.0000 channel recording system 5%




Vision: A Future of seismology in ATI

* Challenge 1: Rolling out a dense seismic network
across the globe
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Vision: A Future of seismology in ATI

* Challenge 1: Rolling out a dense seismic network
across the globe

* Challenge 2: Obtaining the data in real-time

=» Relatively simple informatics problem.

=» Societal and Political science aspects to
roll this out to poor and instable countries.

30



Vision: A Future of seismology in ATI

* Challenge 1: Rolling out a dense seismic network
across the globe

* Challenge 2: Obtaining the data in real-time

31



Vision: A Future of seismology in ATI

* Challenge 1: Rolling out a dense seismic network
across the globe

* Challenge 2: Obtaining the data in real-time

* Challenge 3: The Earth-Data-Science challenge

32



Vision: A Future of seismology in ATI

* Challenge 1: Rolling out a dense seismic network
across the globe

* Challenge 2: Obtaining the data in real-time

* Challenge 3: The Earth-Data-Science challenge

=» Need mathematicians, informaticians, statisticians,
and physicists to join with Earth scientists.

33
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Data science challenges and solutions in
Astrochemistry

Serena Viti
Department of Physics and Astronomy
UCL



Molecular observations and interpretation:
The canonical approach and its limitations
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This 4-step procedure highlights the inverse nature of
the problem - deriving information about molecular
clouds using observational information and, even well
established modelling codes, is an inverse problem
that usually does not fulfil Hadamard's postulates of well
posedness i.e:

* it may not have a solution
 solutions might not be unique and/or might not
depend continuously on the observational data.

- We have to deal with non-linear ill-posed inverse
problems.



The Inverse Problem

Forward Problem

Chemical Model Data
Physical Parameters e

: e Chemical Species
Cloud Density, Radiation, ' Rt B 5 L2y X Abundances

Cosmic Rays etc. o s SO 7

A 4

Inverse Problem




9] CHEMICAL ABUNDANCES

GRID OF PARAMETERS

OBSERVATIONS




UCL_CHEM CHEMICAL ABUNDANCES

GRID OF PARAMETERS

DATA ANALYSIS

k-NN,
Bayesian Inference,
KD-trees, <
Hierarchical clustering,
etc

OBSERVATIONS




Models

The challenge of the inverse problem
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The first two
proof of concept
projects led to
over a million
chemical models
(Makrymallis et
al. 2014, 2016)

|

This analysis led
to a potential
breakthrough in
the way
experimentalist
astrochemists
approach the
problem of
surface
reactions.

e.g. 15 out of 23
reactions are not
needed

No. Reactions
1. O + H = OH
2. OH + H = H,O
3. CO + OH - COq
4. S + H = HS
5. HS + H - H,S
+ s
+ —
+ — 2GS
+ S =

CO +
HCO +
H,CO + H

-
-
-
-
-
-
-

H,CO
CH30H




Aims

* Need to

— Maximise the number of models we can run 2>
essential for the accuracy and validity of statistical
iInferences

— Perform rapid testing
— Perform large scale sensitivity analyses

* |n order to do that, we need to:

— Perform innumerable simulations over a very large
parameter space, generating a combinatorial explosion
of model runs and large, high-dimensional data sets.



Generating Insight from Big
Data in Energy and the

Environment
David Wallom



Scale matters
for problems and solutions
in the built environment
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Scale matters
for problems and solutions
in the bwlt enwronment
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Scale matters
for problems and solutions
in the built enm\aronment

AuUtnority

{ The Challenge
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Energy (kWh)

Acummulative annual energy (Mwh)

Energy usage in retail premises
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Clustering electricity load profiles using
Bayesian clustering on domestic energy
consumption

Cluster 1 of 4 formed by 73 data points

Cluster 3 of 4 formed by 14 data points

2o UNIVERSITY OF
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Cluster 2 of 4 formed by 75 data points

Cluster 4 of 4 formed by 59 data points

Normalised power
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Data from EC FP7 DEHEMS
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Clustering electricity load profiles using
Bayesian clustering on domestic energy

B B © Signin News Sport Weather iPlayer TV Ra

NEWS ENGLAND '\

Home World UK R=FIELGE N. Ireland Scotland Wales Business Politics Health Education Scl/En

20 January 2014 Last updated at 10:53 n OdsEa Examples‘
A black box tamper: A device,
Criminal gangs 'hotwire power supply’ to often concealed in a black box

help cut bills (hence the name), is fitted to an
N y electricity meter to either stop

the index, slow it down or even

reverse the reading.

Index Tamper: Directly altering

the recorded total consumption

via meter breach

8 £ .
As the row over energy prices grows ever more heated, a growing number of
people are choosing to steal their gas and electricity.

Criminal gangs are helping homeowners and landlords avoid paying Related Stories

for power by "hotwiring" supplies for as little as £10, BBC Inside Out
= oxrorD AN - o er>RC



Commercial energy consumption and real time

pricing

= Analyse the impact of introduction of time-of-use and real-
time pricing strategies

Normalised daily
power demand
profiles for all
businesses by sector

(Top Level SIC
Classification)

Data from Opus Energy Ltd

e UNIVERSITY OF
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Commercial energy consumption and real time

pricing

= Analyse the impact of introduction of time-of-use and real-
time pricing strategies
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= Turning Data into Actionable Information;

= Predicting and classifying costs with a shift in tariff type, e.g. shifting
to a real-time tariff from a fixed price tariff,

= Clustering of load profiles, determining behaviour type and/or
consumer response, detecting energy theft

= Determining fundamental drivers of energy consumption and
improving understanding.

= Create commercial value

Fa UNIVERSITY OF W E PS RC



The weather@home regional modelling project

* High impact weather events

are typically rare and
unpredictable.

— Flooding

— Heatwave

— Drought

* They also involve small
scales.

e Resolution provided by
nested regional model.

@ climateprediction.net

* Modify boundary conditions
to mimic counter-factual
“world that might have
been”.

Use keyboard keys
to change view

T - Temperature

R - Rain & Snow

P - Pressure

V - Potential vorticity

G - Show/Hide grid

W - Global/Regional views
H - Help & more options

e-Resear
Centr

Department of Phyics



UK Winter 2014 Floods

4§Oouthern UK Rainfall - 39726 Simulations °* 39726 simulations
o 201372014 wintar i the worid that might have been [GTB® e 2014 ﬂooding described as
a 1in 100 year event in

terms of rainfall volume
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UK Winter 2014 Floods

040§50uthern UK Rainfall - 39726 Simulations

39726 simulations

ean. 25 64 * 2014 flooding described as
et a 1in 100 year event in
terms of rainfall volume

z * Return time plot shows this

g oox has become a 1in 80 year in

terms of risk

0.010

* Risk of a very wet winter
has increased by 25%

O “ Percentdgge increa:g in risk N 100 (SCha”er et al, Jan 16, NCC)

@ climateprediction.net ;fm
S Department of Physics

0.005

0.000




\Worlo
Weather
Attribution

A new international effort designed to

sharpen and accelerate the scientific

community’s ability to analyze and Bk < N
communicate the possible influence of & & 0
climate change on extreme-weather

events such as storms, floods, heat
waves and droughts. \

California wildfires, 2014




A Multi-Method Approach

« Observational data, regional and global climate
models.

Provide answers about trends in risk and
vulnerability, and the role of human activity in
extreme weather.

Possible outcomes of our attribution analysis of an
event:
- Global warming increased its likelihood.
- Global warming reduced its likelihood.
- Global warming had no detectable role.
- Our analysis methods were unable to give
information.

Malawi flood, 2015




