Precision Calculations for Coloured Supersymmetric Particle Production at the Large Hadron Collider

Christoph Borschensky

with Wim Beenakker, Michael Krämer, Anna Kulesza, and Eric Laenen

PSR Workshop Paris, O5 July 2016

Outline

Motivation

Calculations

- Soft-gluon resummation at NNLL
- Coulomb resummation and bound states below threshold

B Results

- Impact of resummed PDFs on the predictions: NNPDF3.0 studies
- Updated predictions for squark and gluino production: NNLL-fast
- Comparison to SCET

4 Summary

Searches for supersymmetry

Main sparticle production processes:

Searches for supersymmetry

Main sparticle production processes:

Searches for supersymmetry

Main sparticle production processes:

 \Rightarrow Cross sections needed at high precision for experimental searches

Supersymmetry?

Supersymmetry (SUSY) connects bosons to fermions and vice versa

ightarrow New particles that "only" differ in their spin quantum number

("Reality": broken symmetry, heavy SUSY particles, R-parity, ...)

Supersymmetry?

Supersymmetry (SUSY) connects bosons to fermions and vice versa

ightarrow New particles that "only" differ in their spin quantum number

LO production of squarks and gluinos

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{\hat{s}} \rightarrow 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} := \sqrt{1 - \frac{4m^2}{\hat{s}}} \to 0$$

with $\sqrt{\hat{s}}$: partonic centre-of-mass energy, *m*: average mass of final state particles

- \Rightarrow Just enough energy to produce the two sparticles
- \Rightarrow Real radiation processes are soft

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{\hat{s}} \rightarrow 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} := \sqrt{1 - \frac{4m^2}{\hat{s}}} \to 0$$

with $\sqrt{\hat{s}}$: partonic centre-of-mass energy, *m*: average mass of final state particles

- \Rightarrow Just enough energy to produce the two sparticles
- \Rightarrow Real radiation processes are soft

Remainder after cancellation of IR divergencies:

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{\hat{s}} \rightarrow 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} := \sqrt{1 - \frac{4m^2}{\hat{s}}} \to 0$$

with $\sqrt{\hat{s}}$: partonic centre-of-mass energy, *m*: average mass of final state particles

- \Rightarrow Just enough energy to produce the two sparticles
- \Rightarrow Real radiation processes are soft

Additionally:

$$\overbrace{\text{Coulomb gluons}}^{\text{reconstruction}} \rightarrow \overbrace{\sim \alpha_{s}^{n}/\beta^{n}}^{\text{reconstruction}}$$

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{\hat{s}} \rightarrow 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} := \sqrt{1 - \frac{4m^2}{\hat{s}}} \to 0$$

with $\sqrt{\hat{s}}$: partonic centre-of-mass energy, m: average mass of final state particles

- \Rightarrow Just enough energy to produce the two sparticles
- \Rightarrow Real radiation processes are soft

Enhanced partonic cross sections close to threshold:

- Soft & collinear gluons: $\alpha_s^n \ln^m \beta^2 \sim 1$
- Coulomb gluons: $\left(\frac{\alpha_s^n}{\beta^n} \sim 1\right)$
- \Rightarrow Endangering the perturbative series
- \Rightarrow Systematic treatment of these terms required

Treating large logarithms

Threshold logarithms in Mellin-moment space (threshold limit: $\beta \to 0 \doteq N \to \infty$):

 $\ln \beta^2 \xrightarrow{\text{Mellin}} \ln N =: L$ (neglect subleading terms $\mathcal{O}(1/N)$)

Reordering of the perturbative series in α_s and L

Resummation via renormalisation group equations

Exponential form $(g_1, g_2, g_3 \text{ known})$:

 $\tilde{\sigma} \sim \tilde{\sigma}^{(0)} \times C(N, \alpha_{\rm s}) \exp \left[L g_1(\alpha_{\rm s} L) + g_2(\alpha_{\rm s} L) + \alpha_{\rm s} g_3(\alpha_{\rm s} L) + \ldots \right]$

[Kodaira, Trentadue 83][Sterman 87][Catani, D'Emilio, Trentadue '88][Catani, Trentadue '89][Kidonakis, Sterman '96][Kidonakis, Oderda, Sterman '98] [Contopanagos, Laenen, Sterman '96][Catani, de Florian, Grazzini '01][Moch, Vermaseren, Vogt '04][Beneke, Falgari, Schwinn '09][Czakon, Mitov, Sterman '09][Ferroglia, Neubert, Pecjak, Yang '09] ...

Treating large logarithms

Threshold logarithms in Mellin-moment space (threshold limit: $\beta \to 0 \doteq N \to \infty$):

 $\ln \beta^2 \xrightarrow{\text{Mellin}} \ln N =: L$ (neglect subleading terms $\mathcal{O}(1/N)$)

Reordering of the perturbative series in $\alpha_{\rm s}$ and L

Resummation via renormalisation group equations

Exponential form (g_1 , g_2 , g_3 known):

 $\tilde{\sigma} \sim \tilde{\sigma}^{(0)} \times \mathbb{C}^{\text{hard}} \times \mathbb{C}^{\text{Coul}} \times \Delta \Delta \Delta$

[Kodaira, Trentadue 83][Sterman 87][Catani, D'Emilio, Trentadue '88][Catani, Trentadue '89][Kidonakis, Sterman '96][Kidonakis, Oderda, Sterman '98] [Contopanagos, Laenen, Sterman '96][Catani, de Florian, Grazzini '01][Moch, Vermaseren, Vogt '04][Beneke, Falgari, Schwinn '09][Czakon, Mitov, Sterman '09][Ferroglia, Neubert, Pecjak, Yang '09] ...

Treating large logarithms

Threshold logarithms in Mellin-moment space (threshold limit: $\beta \to 0 \doteq N \to \infty$):

 $\ln \beta^2 \xrightarrow{\text{Mellin}} \ln N =: L$ (neglect subleading terms O(1/N))

Reordering of the perturbative series in $\alpha_{\rm s}$ and L

Resummation via renormalisation group equations

Exponential form (g_1 , g_2 , g_3 known):

 $\tilde{\sigma} \sim \tilde{\sigma}^{(0)} \times \mathbb{C}^{\text{hard}} \times \mathbb{C}^{\text{Coul}} \times \Delta \Delta \Delta$

[Kodaira, Trentadue 83][Sterman 87][Catani, D'Emilio, Trentadue '88][Catani, Trentadue '89][Kidonakis, Sterman '96][Kidonakis, Oderda, Sterman '98] [Contopanagos, Laenen, Sterman '96][Catani, de Florian, Grazzini '01][Moch, Vermaseren, Vogt '04][Beneke, Falgari, Schwinn '09][Czakon, Mitov, Sterman '09][Ferroglia, Neubert, Pecjak, Yang '09] ...

Higher order terms of different origin; split-up close to threshold:

[Beneke, Falgari, Schwinn '09-10]

• $C^{\text{Hard}}(\alpha_s)$: hard matching coefficients (independent of *N*)

[Beenakker, Janssen, Lepoeter, Krämer, Kulesza, Laenen, Niessen, Thewes, Van Daal '13][Broggio, Ferroglia, Neubert, Vernazza, Yang '13]

• $C^{Coul}(N, \alpha_s)$: Coulomb terms (final state gluon exchange)

[Kulesza, Motyka '09][Beneke, Falgari, Schwinn '10][Falgari, Schwinn, Wever '12] [Fadin, Khoze '87][Peskin, Strassler '91][Hagiwara, Yokoya '09][Kauth, Kühn, Marquard, Steinhauser '09-11][Kauth, Kress, Kühn '11]

Coulomb Green's function

Calculation of ladder diagrams leads to non-relativistic Schrödinger equation [Peskin, Strassler '91]:

$$\left\{ \left[\frac{(-i\nabla)^2}{2m_{\rm red}} + V_C(\vec{r}) \right] - (E + i\Gamma) \right\} G(\vec{r}, E + i\Gamma) = \delta^{(3)}(\vec{r})$$

with $E = \sqrt{\hat{s}} - 2m$: energy and Γ : average decay width of the final state particles, m_{red} : reduced mass,

and the Coulomb potential:

$$V_C(\vec{r}) = -\mathscr{D}_{R_{\alpha}} \frac{\alpha_{\rm s}}{|\vec{r}|} + \mathcal{O}(\alpha_{\rm s}^2)$$

with $\mathscr{D}_{R_{\alpha}}$: colour factor related to Casimir invariants

Coulomb Green's function

The solution at origin is [Beneke, Signer, Smirnov '99][Pineda, Signer '06]:

$$G(\vec{0}, E + i\Gamma) = i \frac{m_{\text{red}}^2}{\pi} v \Delta_{\text{nC}} + \mathcal{D}_{R_a} \frac{\alpha_{\text{s}} m_{\text{red}}^2}{\pi} \left[g_{\text{LO}} \Delta_{\text{nC}} + \frac{\alpha_{\text{s}}}{4\pi} g_{\text{NLO}} + \dots \right]$$

with $g_{LO}(g_{NLO})$ contributions from LO (NLO) Coulomb potential ($g_{LO} \sim$ Sommerfeld factor) and Δ_{nC} : spin-dependent terms of non-Coulombic origin [Beneke, Czakon, Falgari, Mitov, Schwinn '11]

Incorporate into resummation framework:

$$\hat{\sigma}^{\text{Coul}, res} = \hat{\sigma}^{\text{LO}} \times \frac{\text{Im } G(\vec{0}, E + i\Gamma)}{\text{Im } G^{\text{free}}(\vec{0}, E + i\Gamma)}$$

with the velocity $v = \sqrt{\frac{E + i\Gamma}{2m_{\rm red}}} \approx \sqrt{\frac{m}{2m_{\rm red}}}\beta$

Coulomb Green's function

The solution at origin is [Beneke, Signer, Smirnov '99][Pineda, Signer '06]:

$$G(\vec{0}, E + i\Gamma) = i \frac{m_{\text{red}}^2}{\pi} v \Delta_{\text{nC}} + \mathcal{D}_{R_a} \frac{\alpha_{\text{s}} m_{\text{red}}^2}{\pi} \left[g_{\text{LO}} \Delta_{\text{nC}} + \frac{\alpha_{\text{s}}}{4\pi} g_{\text{NLO}} + \dots \right]$$

with $g_{LO}(g_{NLO})$ contributions from LO (NLO) Coulomb potential ($g_{LO} \sim$ Sommerfeld factor) and Δ_{nC} : spin-dependent terms of non-Coulombic origin [Beneke, Czakon, Falgari, Mitov, Schwinn '11]

Relevant scale for Coulomb effects [Beneke, Falgari, Schwinn '10]:

$$\mu_C = \max\left\{\mu_B, 2\sqrt{2m\,m_{\rm red}}\beta\right\}$$

with μ_B the Bohr scale, definition see next slide!

Coulomb Green's function: bound states

$$\left[\int_{\infty} \frac{1}{\sqrt{2}} \right]^{2} \sim \operatorname{Im}_{\infty} \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{1}{\sqrt{2}} = \operatorname{Im}_{G} G$$

 $G(\vec{0}, E + i\Gamma)$ develops poles below threshold \rightarrow bound states for attractive Coulomb potential ($\mathscr{D}_{R_a} > 0$):

$$\operatorname{Im} G(\vec{0}, E + i\Gamma) = \operatorname{Im} \sum_{n} \frac{|\psi(0)|^2}{E_n - (E + i\Gamma)} \to \sum_{n} |\psi(0)|^2 \pi \delta \left(E - E_n\right)$$

with $\psi(0)$ the wave function for the bound-state system at origin and E_n the bound-state energies

Relevant scale for bound-state effects: Bohr scale

$$\mu_{B} = 2m_{\mathrm{red}} \mathscr{D}_{R_{\alpha}} \alpha_{\mathrm{s}} \left(\mu_{B} \right)$$

with the equation being solved iteratively

Combining and matching

(Δ NNLO_{Approx}: dominant terms in β for $\beta \rightarrow 0$ [Beneke, Czakon, Falgari, Mitov, Schwinn '09])

Combining and matching

(Δ NNLO_{Approx}: dominant terms in β for $\beta \rightarrow 0$ [Beneke, Czakon, Falgari, Mitov, Schwinn '09])

Combining soft and Coulomb gluon resummation:

$$\tilde{\sigma}^{\text{soft+Coul,res}} \sim \mathcal{C}^{\text{hard}} \times \Delta \Delta \Delta \times \int_0^1 dx \, x^{N-1} \hat{\sigma}^{\text{Coul,res}}$$

Combining and matching

(Δ NNLO_{Approx}: dominant terms in β for $\beta \rightarrow 0$ [Beneke, Czakon, Falgari, Mitov, Schwinn '09])

Combining soft and Coulomb gluon resummation:

$$\tilde{\sigma}^{\text{soft+Coul,res}} \sim \mathcal{C}^{\text{hard}} \times \Delta \Delta \Delta \times \int_{0}^{1} \mathrm{d}x \, x^{N-1} \hat{\sigma}^{\text{Coul,res}}$$

Matching to fixed order:

$$\sigma^{\text{matched,res}} \sim \sigma^{\text{NNLO}_{\text{Approx}}} + \sigma^{\text{BS}} + \int_{C_{\text{MP}}} dN \left[\tilde{\sigma}^{\text{soft+Coul,res}}(N) - \tilde{\sigma}^{\text{soft+Coul,res}}(N) \right|_{\text{NNLO}} \right]$$

Threshold-improved NNPDFs: luminosities

DIS+DY+top fits (reduced data sets compared to "global fit" NNPDF3.0 analysis)

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; arXiv: 1510.00375]

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; arXiv: 1510.00375]

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; arXiv: 1510.00375]

Numerical package: NNLL-fast

Code package to compute NNLO_{Approx}+NNLL cross sections including Coulomb resummation and bound states

- §ğ, qq^{*}, qğ, qq, t^{*} and decoupling limit for g and q
- \blacktriangleright Including $\alpha_{\rm s}$, PDF, and scale variation
- At the current LHC Run II energy: $\sqrt{S} = 13$ TeV, or upon request
- Notable increase of cross sections compared to NLL-fast

Available soon! Stay tuned!

NNLL-fast: 2D squark and gluino mass grids

PDF4LHC15_MC sets; K-factor wrt. NLO

NNLL-fast: equal-mass case

- Strongest relative enhancement for $\tilde{g}\tilde{g}$
- ► Shape of K' in principle following K; stronger relative enhancement for q̃q^{*} than for q̃g
- ► Kink for high-mass q̃q̃*: effect of setting negative PDF replicas to zero

NNLL-fast: decoupling scenarios

[Beenakker, CB, Krämer, Kulesza, Laenen; in preparation]

Using MSTW 2008 PDFs; improved agreement due to Coulomb resummation and BS

Using MSTW 2008 PDFs; improved agreement due to Coulomb resummation and BS

For almost all processes, scale dependence within NLO+NLL band

For almost all processes, scale dependence within NLO+NLL band

Summary

- ✓ Threshold-improved PDFs change both the quantitative and qualitative behaviour of the cross sections
 - ► In the future, relevant for phenomenological studies
- ✓ Combined resummation of soft and Coulomb gluons in Mellin-moment space at NNLL, including bound states
 - ► For all processes of squark and gluino production
 - Useful for many phenomenological studies:
 - ★ Production of stops treated separately from $\tilde{q}\tilde{q}^*$ due to strong mixing
 - \star Including special scenarios where only \tilde{g} or \tilde{q} are within experimental reach
 - Available for squark and gluino masses from 0.5 to 3 TeV
 - Results compatible with SCET

Outlook:

🖉 Public code with PDF4LHC15 in preparation: NNLL-fast

NNLL-fast: equal-mass case with negative replicas

- Process mainly affected by negative replicas: q̃q^{*}
- ▶ Only at high masses where the PDF uncertainties are large
- ▶ q̃g and q̃q not affected

Scale dependence for squarks and gluinos

