Charmless B. Decays Thomas Latham University of Warwick

Not so charmless...

- Charmless B decays have many great features
- Several contributing (and interfering) diagrams
- Potential to measure all 3 UT angles
- Potential for direct CP violation
- Rich spectrum of resonant states
- Scalars, vectors, tensors, pseudo-scalars, axialvectors etc.

A wealth of decay modes!

Charmless Mesonic B Branching Fractions

What to pick?

- UK has had a high level of involvement in all 3 charmless AWGs over the years, including providing several of the conveners
- Very difficult to select from > 100 published analyses (large % of BaBar total!)
- I shall concentrate on 2 main topics:
 - Development of analysis techniques
 - Surprises and puzzles
- Apologies if your analysis isn't mentioned

Continuum background fighting

- Big problem for charmless decays
- Light quark
 continuum cross
 section ~3xbb
- B mesons produced almost at rest since just above threshold
- Use the topology of the event to discriminate

Multivariate Analysers

- Usually combine topological variables in an MVA
- Development of dedicated packages such as TMVA and StatPatternRecognition
- Over the years have seen a great improvement in discriminating power
 - Improved range and performance of classifiers
 - Improved knowledge and selection of input variables

Multi-dimensional likelihood fits

- Multi-dimensional extended maximum likelihood fits are the norm in all BaBar analyses of charmless hadronic decays
- Have maximised our sensitivity to the data
- Allowed observations of decays like π⁰π⁰, K_SK⁺ and K_SK_S and evidence for ρ⁰ρ⁰

Dalitz-plot analysis

- Dalitz plot (DP) is a 2D visualisation of the complete phase space for decays of a spin-0 particle into 3 spin-0 particles (i,j,k)
 - e.g. decays of a *B* meson into combinations of π^{\pm} , π^{0} , K^{\pm} , K^{0} , η , η' etc.
- > Any point in the DP must satisfy

 $m_B^2 + m_i^2 + m_j^2 + m_k^2 = m_{ij}^2 + m_{ik}^2 + m_{jk}^2$

- Traditionally plotted as m_{ik}^2 vs. m_{jk}^2
- Purely phase-space decays would uniformly populate the DP

The power of the Dalitz plot

- Resonances appear as bands of events in the Dalitz plot
- Position and size of band related to mass and width
- Resonance spin governs distribution of events along the band
- Exact pattern of events in Dalitz plot determined by interference between the various contributing states

Red points show a spin 0 resonance
 Green points show spin 1 resonance
 Purple points show spin 2 resonance

Isobar Model

 Model the complete 3-body decay as a sum of contributing amplitudes

- Both nonresonant and resonant amplitudes
- F = resonance dynamics
- c and θ are relative magnitudes and phases

Resonance Dynamics

 $R_j(m) = \frac{1}{(m_0^2 - m^2) - im_0 \Gamma(m)}$

 $\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2J+1} \left(\frac{m_0}{m}\right) \frac{X_J^2(q)}{X_J^2(q_0)}$

 $\Gamma(m) = \Gamma_{\pi\pi}(m) + \Gamma_{KK}(m).$

$$F_j = R_j \times X_J(p^*) \times X_J(q) \times T_j$$

$$\begin{aligned} T_{j}^{J=0} &= 1 \\ T_{j}^{J=1} &= -2 \, \vec{p} \cdot \vec{q} \\ T_{j}^{J=2} &= \frac{4}{3} \left[3 (\vec{p} \cdot \vec{q})^{2} - (|\vec{p}| |\vec{q}|)^{2} \right] \end{aligned}$$

$$\begin{aligned} X_{J=0}(z) &= 1, \\ X_{J=1}(z) &= \sqrt{1/(1 + (z r_{\rm BW})^2)}, \\ X_{J=2}(z) &= \sqrt{1/((z r_{\rm BW})^4 + 3(z r_{\rm BW})^2 + 9)} \end{aligned}$$

$$\Gamma_{\pi\pi}(m) = g_{\pi} \left(\frac{1}{3} \sqrt{1 - 4m_{\pi^0}^2/m^2} + \frac{2}{3} \sqrt{1 - 4m_{\pi^\pm}^2/m^2} \right), \qquad R_j(m) = \frac{m_{K\pi}}{q \cot \delta_B - iq} + e^{2i\delta_B} \frac{m_0 \Gamma_0 \frac{m_0}{q_0}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}}}$$

 $\cot \delta_B = \frac{1}{aq} + \frac{1}{2}rq$

 $m \sim -$

Results from K⁺ $\pi^+\pi^-$ **DP Fit**

Total Fit Result Continuum background BB background

Phys. Rev. D78, 012004 (2008)

Mode	Fit Fraction $(\%)$	$\mathcal{B}(B^+ \to \operatorname{Mode})(10^{-6})$	A_{CP} (%)	DCPV Sig
$K^+\pi^-\pi^+$ Total		$54.4 \pm 1.1 \pm 4.5 \pm 0.7$	$2.8 \pm 2.0 \pm 2.0 \pm 1.2$	
$\overline{K^{*0}(892)\pi^+; K^{*0}(892) \to K^+\pi^-}$	$13.3 \pm 0.7 \pm 0.7 {}^{+0.4}_{-0.9}$	$7.2\pm0.4\pm0.7^{+0.3}_{-0.5}$	$+3.2\pm5.2\pm1.1^{+1.2}_{-0.7}$	0.9σ
$(K\pi)_0^{*0}\pi^+; \ (K\pi)_0^{*0} \to K^+\pi^-$	$45.0 \pm 1.4 \pm 1.2 {}^{+12.9}_{-0.2}$	$24.5 \pm 0.9 \pm 2.1 {}^{+7.0}_{-1.1}$	$+3.2 \pm 3.5 \pm 2.0 {}^{+2.7}_{-1.9}$	1.2σ
$\rho^{0}(770)K^{-}; \rho^{0}(770) \to \pi^{+}\pi^{-}$	$6.54 \pm 0.81 \pm 0.58 {}^{+0.69}_{-0.26}$	$3.56 \pm 0.45 \pm 0.43 \substack{+0.38 \\ -0.15}$	$+44 \pm 10 \pm 4^{+5}_{-13}$	\sim 3.7 σ
$f_0(980)K^-; f_0(980) \to \pi^+\pi^-$	$18.9 \pm 0.9 \pm 1.7 {}^{+2.8}_{-0.6}$	$10.3 \pm 0.5 \pm 1.3 {}^{+1.5}_{-0.4}$	$-10.6 \pm 5.0 \pm 1.1 {}^{+3.4}_{-1.0}$	1.8σ
$\chi_{c0}K^+;\chi_{c0}\to\pi^+\pi^-$	$1.29 \pm 0.19 \pm 0.15 {}^{+0.12}_{-0.03}$	$0.70 \pm 0.10 \pm 0.10 {}^{+0.06}_{-0.02}$	$-14 \pm 15 \pm 3 {}^{+1}_{-5}$	0.5σ
$K^+\pi^-\pi^+$ nonresonant	$4.5 \pm 0.9 \pm 2.4 \substack{+0.6 \\ -1.5}$	$2.4 \pm 0.5 \pm 1.3 {}^{+0.3}_{-0.8}$		
$K_2^{*0}(1430)\pi^+; K_2^{*0}(1430) \to K^+\pi^-$	$3.40 \pm 0.75 \pm 0.42 ^{+0.99}_{-0.13}$	$1.85 \pm 0.41 \pm 0.28 {}^{+0.54}_{-0.08}$	$+5 \pm 23 \pm 4^{+18}_{-7}$	0.2σ
$\omega(782)K^+; \ \omega(782) \to \pi^-\pi^-$	$0.17 \pm 0.24 \pm 0.03 {}^{+0.05}_{-0.08}$	$0.09 \pm 0.13 \pm 0.02 {}^{+0.03}_{-0.04}$	_	
$f_2(1270)K^+; f_2(1270) \rightarrow \pi^+\pi^-$	$0.91 \pm 0.27 \pm 0.11 {}^{+0.24}_{-0.17}$	$0.50 \pm 0.15 \pm 0.07 {}^{+0.13}_{-0.09}$	$85 \pm 22 \pm 13 {}^{+22}_{-2}$	3.5σ
$f_{\rm X}(1300)K^+; f_{\rm X}(1300) \to \pi^+\pi^-$	$1.33 \pm 0.38 \pm 0.86 {}^{+0.04}_{-0.14}$	$0.73 \pm 0.21 \pm 0.47 {}^{+0.02}_{-0.08}$	$+28 \pm 26 \pm 13^{+7}_{-5}$	0.6σ

Time-dependent DP analysis!

- Combining the two techniques has led to determinations of:
- α from $\pi\pi\pi^0$
- β from $K_{\rm S}\pi\pi$ and $K_{\rm S}KK$
- NB β itself, not sin(2 β)!
- Combining measurements from $K\pi\pi$ modes $\rightarrow \gamma$

Phys. Rev. D76, 012004 (2007)

arXiv:0708.2097 [hep-ex]

B Factory UK Symposium 1st April 2009

$b \rightarrow s$ Penguin HFAG Averages $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \stackrel{HFAG}{\simeq}$ RELIMINARY World Average 0.67 ± 0.02 b→.ccs ... 0.20±0.25±0.03 BaBar Belle 0.87 Average 0.44 (a Bar $0.57 \pm 0.08 \pm 0.02$ Belle $0.84 \pm 0.10 \pm 0.0$ erade 0.52 ± 0.0 Belle verade ≌ Belle $0.87 \pm 0.81 \pm 0.08$ Results from ٩, 28±0.09±0.0 time-dependent verade 0.55 X ± 0.0 \overline{z} Dalitz-plot analyses Belle $0.11 \pm 0.48 \pm$ Averade 0.64 ጜ 08.0 a Ba $0.89 \pm 0.08 \pm 0.03$ Belle $0.88 \pm 0.15 \pm 0.03$ Avera -2 -1 Ũ 2 1

$B \rightarrow VV$ decays

- Three helicity states in Vector–Vector decays
- Requires very sophisticated angular analysis to untangle different helicity contributions
- SM expectation is for ~ longitudinal polarisation

B → VV Angular Analysis

Similar to DP analysis in its complexity
Need to model the 3 angular distributions

$$\frac{d^{3}\Gamma}{d\cos\theta_{1}d\cos\theta_{2}d\Phi} \propto \left\{ \begin{array}{c} \left[\frac{1}{4}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\left(|A_{+}|^{2}+|A_{-}|^{2}\right)\right] + \left[\cos^{2}\theta_{1}\cos^{2}\theta_{2}|A_{0}|^{2}\right] \\ \text{Instructional} \\ + \frac{1}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\left[\cos 2\Phi \operatorname{Re}(A_{+}A_{-}^{*}) - \sin 2\Phi \operatorname{Im}(A_{+}A_{-}^{*})\right] \\ + \frac{1}{4}\sin 2\theta_{1}\sin 2\theta_{2}\left[\cos \Phi \operatorname{Re}(A_{+}A_{0}^{*}+A_{-}A_{0}^{*}) - \sin \Phi \operatorname{Im}(A_{+}A_{0}^{*}-A_{-}A_{0}^{*})\right] \right\}$$

The "Polarisation Puzzle"

- Experimental results show a range of f_L values
- Apparent trend:
 - Tree dominated, $f_L \sim 1$
 - Penguin dominated, f_L ~ 0.5
- However, Vector-Tensor seem not to show the same trend
- But Vector-Axial Vector look like they might be the same
- Need more data!

Polarizations of Charmless Decays

Longitudinal Polarization Fraction (fL)

Another surprise: $B^- \rightarrow K^+ K^- \pi^-$

- Possible contributions to this DP (e.g. K^{*0}K⁻ or φπ⁻) predicted to be small
- Experimental searches confirmed this – only upper limits in range 10⁻⁷ – 10⁻⁶ found
- But inclusive search found BF of 5 x 10⁻⁶!!
- Large enhancement in K⁺K⁻ spectrum seen around 1500 MeV
- Similar structure seen in DP analyses of 3K decays
- What is it?

Phys. Rev. Lett. 99, 221801 (2007)

Phys. Rev. D74, 032003 (2006)

B Factory UK Symposium 1st April 2009

Conclusion

- > Studies of charmless decays of *B* mesons provide:
 - Measurements of all 3 Unitarity Triangle angles
 - Comparison with predictions of BFs, CP asymmetries, polarisation fractions from factorisation, SU(3), SCET, etc.
 - Insights into light meson spectroscopy
- Furthermore these analyses have led to the development of some extremely sophisticated techniques
- More precise measurements vital to really test the Standard Model
- Future experiments, such as LHCb and a possible Super Flavour Factory, will be able to improve the precision of these results
- And you never know what surprises you might find!

Backup Material

Analysis Variables - Kinematic

Make use of precision kinematic information from the beams.

$B^+ \rightarrow \rho^0 K^+$ Direct *CP* Asymmetry

B Factory UK Symposium 1st April 2009

Systematic/Model dependence of DCPV in $\rho^{0}K^{+}$

Comparison with Belle – $B^+ \rightarrow K^+ \pi^+ \pi^-$

BELLE-CONF-0827 – 657 million BB

 $\mathcal{O}(K^+) = (+41 \pm 10 \pm 3 \pm \frac{3}{7})\%$

PRD 78, 012004 (2008) – 383 million BB

 $A_{CP}(\rho^0 K^+) = (+44 \pm 10 \pm 4 \pm {}^5_{13})\%$

$B \rightarrow K_{S}h^{+}h^{-}$ HFAG Averages

The Square Dalitz Plot

$$m' \equiv \frac{1}{\pi} \arccos \left(2 \frac{m_{K^+\pi^+} - m_{K^+\pi^+}^{\min}}{m_{K^+\pi^+}^{\max} - m_{K^+\pi^+}^{\min}} - 1 \right),$$

$$\theta' \equiv \frac{1}{\pi} \theta_{K^+\pi^+},$$

- Transformation of coordinates
- "Zooms" into the areas around the boundary of the conventional Dalitz plot
- Increases resolution in those areas of interest
- Used for DP histograms in most analyses

sPlots

[Nucl. Instrum. Meth. A 555 (2005) 356-369]

The sPlots technique is a statistical tool that allows the distribution of a variable for a particular species, e.g. signal, to be reconstructed from the PDFs of other variables
 An sWeight is assigned to each event according to:

$${}_{s}W_{n}(y_{e}) = \frac{\sum_{j=1}^{N_{s}} \mathbf{V}_{nj} f_{j}(y_{e})}{\sum_{k=1}^{N_{s}} N_{k} f_{k}(y_{e})}$$

- Where NS is the number of species, V is the covariance matrix from the fit, f are the PDFs of the variables y, the subscript n refers to the species of interest and the subscript e refers to the event under consideration
- These sWeights have the property that: $\sum_{e} W_n(y_e) = N_n$
- A histogram in a variable (not in the set y) can then be filled with each event weighted by its sWeight
- This histogram will reproduce the e.g. signal distribution of that variable
- sWeights can also be used e.g. in order to correctly deal with signal reconstruction efficiency
 (ε) variation on an event-by-event basis
- In this case a branching fraction can be correctly determined from:

$$BF = \sum_{n} \frac{{}_{s}W_{n}(y_{e})}{\varepsilon_{n}N_{B\overline{B}}}$$