

Not so charmless...

- Charmless B decays have many great features
- Several contributing (and interfering) diagrams
- Potential to measure all 3 UT angles
- Potential for direct CP violation
- Rich spectrum of resonant states
- Scalars, vectors, tensors, pseudo-scalars, axialvectors etc.

A wealth of decay modes!

Charmless Mesonic B Branching Fractions

What to pick?

- UK has had a high level of involvement in all 3 charmless AWGs over the years, including providing several of the conveners
- Very difficult to select from > 100 published analyses (large \% of BaBar total!)
- I shall concentrate on 2 main topics:
- Development of analysis techniques
- Surprises and puzzles
- Apologies if your analysis isn't mentioned

Continuum background fighting

- Big problem for charmless decays
- Light quark continuum cross section $\sim 3 \times b \bar{b}$ B mesons produced almost at rest since just above threshold Use the topology of the event to discriminate

Multivariate Analysers

- Usually combine topological variables in an MVA
- Development of dedicated packages such as TMVA and StatPatternRecognition
- Over the years have seen a great improvement in discriminating power
- Improved range and performance of classifiers
- Improved knowledge and selection of input variables

Multi-dimensional likelihood fits

- Multi-dimensional extended maximum likelihood fits are the norm in all BaBar analyses of charmless hadronic decays
- Have maximised our sensitivity to the data
- Allowed observations of decays like $\pi^{0} \pi^{0}$, $\mathrm{K}_{\mathrm{s}} \mathrm{K}^{+}$and $\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$ and evidence for $\rho^{0} \rho^{0}$

sPlots of $\pi^{0} \pi^{0}$ signal arXiv:0807.4226 [hep-ex]

Dalitz-plot analysis

- Dalitz plot (DP) is a 2D visualisation of the complete phase space for decays of a spin-0 particle into 3 spin-0 particles (i,j,k)
- e.g. decays of a B meson into combinations of $\pi^{ \pm}, \pi^{0}$, $K^{ \pm}, K^{0}, \eta, \eta^{\prime}$ etc.
- Any point in the DP must satisfy

$$
m_{B}^{2}+m_{i}^{2}+m_{j}^{2}+m_{k}^{2}=m_{i j}^{2}+m_{i k}^{2}+m_{j k}^{2}
$$

- Traditionally plotted as $m^{2}{ }_{i k}$ vs. $m^{2}{ }_{j k}$
- Purely phase-space decays would uniformly populate the DP

The power of the Dalitz plot

- Resonances appear as bands of events in the Dalitz plot
- Position and size of band related to mass and width
- Resonance spin governs distribution of events along the band
- Exact pattern of events in Dalitz plot determined by interference between the various contributing states

Isobar Model

- Model the complete 3-body decay as a sum of contributing amplitudes

- Both nonresonant and resonant amplitudes
- $F=$ resonance dynamics
- c and θ are relative magnitudes and phases

Resonance Dynamics

$$
\begin{aligned}
& F_{j}=R_{j} \times X_{J}\left(p^{\star}\right) \times X_{J}(q) \times T_{j} \\
& R_{j}(m)=\frac{1}{\left(m_{0}^{2}-m^{2}\right)-i m_{0} \Gamma(m)} \\
& \Gamma(m)=\Gamma_{0}\left(\frac{q}{q_{0}}\right)^{2 J+1}\left(\frac{m_{0}}{m}\right) \frac{X_{J}^{2}(q)}{X_{J}^{2}\left(q_{0}\right)} \\
& \Gamma(m)=\Gamma_{\pi \pi}(m)+\Gamma_{K K}(m) . \\
& \Gamma_{\pi \pi}(m)=g_{\pi}\left(\frac{1}{3} \sqrt{1-4 m_{\pi^{0}}^{2} / m^{2}}+\frac{2}{3} \sqrt{1-4 m_{\pi^{ \pm}}^{2} / m^{2}}\right), \\
& R_{j}(m)=\frac{m_{K \pi}}{q \cot \delta_{B}-i q} \\
& +e^{2 i \delta_{B}} \frac{m_{0} \Gamma_{0} \frac{m_{0}}{q_{0}}}{\left(m_{0}^{2}-m_{K \pi}^{2}\right)-i m_{0} \Gamma_{0} \frac{q}{m_{K \pi}} \frac{m_{0}}{q_{0}}} \\
& \Gamma_{K K}(m)=g_{K}\left(\frac{1}{2} \sqrt{1-4 m_{K^{ \pm}}^{2} / m^{2}}+\frac{1}{2} \sqrt{1-4 m_{K^{0}}^{2} / m^{2}}\right) \text {. } \\
& T_{j}^{J=0}=1 \\
& T_{j}^{J=1}=-2 \vec{p} \cdot \vec{q} \\
& T_{j}^{J=2}=\frac{4}{3}\left[3(\vec{p} \cdot \vec{q})^{2}-(|\vec{p}||\vec{q}|)^{2}\right] \\
& X_{J=0}(z)=1, \\
& X_{J=1}(z)=\sqrt{1 /\left(1+\left(z r_{\mathrm{BW}}\right)^{2}\right)}, \\
& X_{J=2}(z)=\sqrt{1 /\left(\left(z r_{\mathrm{BW}}\right)^{4}+3\left(z r_{\mathrm{BW}}\right)^{2}+9\right)} \\
& \cot \delta_{B}=\frac{1}{a q}+\frac{1}{2} r q
\end{aligned}
$$

Results from $\mathrm{K}^{+} \pi^{+} \pi^{-}$DP Fit

Total Fit Result
Continuum background BB background

Mode	Fit Fraction (\%)	$\mathcal{B}\left(B^{+} \rightarrow\right.$ Mode $)\left(10^{-6}\right)$	$A_{C P}(\%)$	DCPV Sig.
$K^{+} \pi^{-} \pi^{+}$Total		$54.4 \pm 1.1 \pm 4.5^{2} \pm 0.7$	$2.8 \pm 2.0 \pm 2.0 \pm 1.2$	
$K^{* 0}(892) \pi^{+} ; K^{* 0}(802) \quad K^{+} \pi^{-}$	$13.3 \pm 0.7 \pm 0.7_{-0.9}^{+0.4}$	$7.2 \pm 0.4 \pm 0.7_{-0.5}^{+0.3}$	$13.2 \pm 5.2 \pm 1.1_{-0.7}^{+1.2}$	0.9σ
$(K \pi)_{0}^{* 0} \pi^{+} ;(K \pi)_{0}^{* 0} \rightarrow K^{+} \pi^{-}$	$45.0 \pm 1.4 \pm 1.2_{-0.2}^{+12.9}$	$24.5 \pm 0.9 \pm 2.1_{-1.1}^{+7.0}$	$+3.2 \pm 3.5 \pm 2.0_{-1.9}^{+2.7}$	1.2σ
$\rho^{0}(770) K^{-} ; \rho^{0}(770) \rightarrow \pi^{+} \pi^{-}$	$6.54 \pm 0.81 \pm 0.58_{-0.26}^{+0.9}$	$3.56 \pm 0.45 \pm 0.43_{-0.15}^{+0.38}$	$+44 \pm 10=4_{-13}^{+5}$	3.7σ
$f_{0}(980) K^{-} ; f_{0}(980) \rightarrow \pi^{+} \pi^{-}$	$18.9 \pm 0.9 \pm 1.7_{-0.6}^{+2.8}$	$10.3 \pm 0.5 \pm 1.3_{-0.4}^{+1.5}$	$-10.6 \pm 5.0 \pm 1.1_{-1.0}^{+3.4}$	1.8σ
$\chi_{c 0} K^{+} ; \chi_{c 0}^{+0} \rightarrow \pi^{+} \pi^{-}$	$1.29 \pm 0.19 \pm 0.15_{-0.03}^{+0.12}$	$0.70 \pm 0.10 \pm 0.10_{-0.02}^{+0.06}$	$-14 \pm 15 \pm 3_{-5}^{+1}$	0.5σ
$K^{+} \pi^{-} \pi^{+}$nonresonant	$4.5 \pm 0.9=2.4_{-1.5}^{+0.6}$	$2.4 \pm 0.5 \pm 1.3_{-0.8}^{+0.3}$	-	-
$K_{2}^{* 0}(1430) \pi^{+} ; K_{2}^{* 0}(1430) \rightarrow K^{+} \pi^{-}$	$3.40 \pm 0.75 \pm 0.42_{-0.13}^{+0.99}$	$1.85 \pm 0.41 \pm 0.28_{-0.08}^{+0.54}$	$+5 \pm 23 \pm 4_{-7}^{+18}$	0.2σ
$\omega(782) K^{+} ; \omega(782) \rightarrow \pi^{-} \pi^{-}$	$0.17 \pm 0.24 \pm 0.03_{-0.08}^{+0.05}$	$0.09 \pm 0.13 \pm 0.02_{-0.04}^{+0.03}$	-	-
$f_{2}(1270) K^{+} ; f_{2}(1270), \pi^{+} \pi^{-}$	$0.91 \pm 0.27 \pm 0.11_{-0.17}^{+0.24}$	$0.50 \pm 0.15 \pm 0.07_{-0.09}^{+0.13}$	$85 \pm 22 \pm 13_{-2}^{+22}$	3.5σ
$f_{\mathrm{X}(1300) K^{+} ; f \mathrm{X}(1300) \rightarrow \pi^{+} \pi^{-}}$	$1.33 \pm 0.38 \pm 0.86_{-0.14}^{+0.04}$	$0.73 \pm 0.21 \pm 0.47_{-0.08}^{+0.02}$	$+28 \pm 26 \pm 13_{-5}^{+7}$	0.6σ

Time-dependent DP analysis!

Phys. Rev. D76, 012004 (2007)

- Combining the two techniques has led to determinations of:
- α from $\pi \pi \pi^{0}$
- β from $K_{\mathrm{s}} \pi \pi$ and $K_{\mathrm{s}} K K$
- NB β itself, not $\sin (2 \beta)$!
- Combining measurements from $K \pi \pi$ modes $\rightarrow \gamma$

arXiv:0708.2097 [hep-ex]

$b \rightarrow s$ Penguin HFAG Averages

$\mathrm{B} \rightarrow \mathrm{VV}$ decays

- Three helicity states in Vector-Vector decays
- Requires very sophisticated angular analysis to untangle different helicity contributions
- SM expectation is for \sim longitudinal polarisation

$\mathrm{B} \rightarrow$ VV Angular Analysis

- Similar to DP analysis in its complexity
- Need to model the 3 angular distributions

$$
\begin{aligned}
& \frac{d^{3} \Gamma}{d \cos \theta_{1} d \cos \theta_{2} d \Phi} \propto\left\{\sqrt{\frac{1}{4} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}\left(\left|A_{+}\right|^{2}+\left|A_{-}\right|^{2}\right)}+\frac{\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\left|A_{0}\right|^{2}}{\text { transverse }}\right. \\
&+\frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}\left[\cos 2 \Phi \operatorname{Re}\left(A_{+} A_{-}^{*}\right)-\sin 2 \Phi \operatorname{Im}\left(A_{+} A_{-}^{*}\right)\right] \\
&\left.+\frac{1}{4} \sin 2 \theta_{1} \sin 2 \theta_{2}\left[\cos \Phi \operatorname{Re}\left(A_{+} A_{0}^{*}+A_{-} A_{0}^{*}\right)-\sin \Phi \operatorname{Im}\left(A_{+} A_{0}^{*}-A_{-} A_{0}^{*}\right)\right]\right\}
\end{aligned}
$$

The "Polarisation Puzzle"

- Experimental results show a range of f_{L} values
- Apparent trend:
- Tree dominated, $\mathrm{f}_{\mathrm{L}} \sim 1$
- Penguin dominated, $\mathrm{f}_{\mathrm{L}} \sim$ 0.5
- However, VectorTensor seem not to show the same trend
- But Vector-Axial Vector look like they might be the same
- Need more data!

Polarizations of Charmless Decays

Another surprise: $\mathrm{B}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{-}$

- Possible contributions to this DP (e.g. $\mathrm{K}^{*} \mathrm{~K}^{-}$or $\phi \pi^{-}$) predicted to be small
- Experimental searches confirmed this - only upper limits in range 10^{-7} -10^{-6} found
- But inclusive search found BF of 5×10^{-6} !
- Large enhancement in $\mathrm{K}^{+} \mathrm{K}^{-}$spectrum seen around 1500 MeV
- Similar structure seen in

Conclusion

- Studies of charmless decays of B mesons provide: - Measurements of all 3 Unitarity Triangle angles
- Comparison with predictions of BFs, CP asymmetries, polarisation fractions from factorisation, SU(3), SCET, etc.
- Insights into light meson spectroscopy
- Furthermore these analyses have led to the development of some extremely sophisticated techniques
- More precise measurements vital to really test the Standard Model
- Future experiments, such as LHCb and a possible Super Flavour Factory, will be able to improve the precision of these results
- And you never know what surprises you might find!

Backup Material

Analysis Variables - Kinematic

Make use of precision kinematic information from the beams.

Characteristic
Signal
Distributions

$$
m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}} \quad \text { Plots show MC data }
$$

$$
\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}
$$

$B^{+} \rightarrow \rho^{0} K^{+}$Direct CP Asymmetry

$$
\begin{aligned}
& \text { All } \\
& \\
& \cos \left(\theta_{\mathrm{H}}\right) \\
& >0
\end{aligned}
$$

Systematic/Model dependence of DCPV in $\rho^{0} K^{+}$

Comparison with Belle - $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$

BELLE-CONF-0827-657 million BB

PRD 78, 012004 (2008) - 383 million BB

$$
\mathbf{A}_{C P}\left(\rho^{0} \boldsymbol{K}^{+}\right)=\left(+44 \pm 10 \pm 4 \pm{ }_{13}\right) \%
$$

$\mathrm{B} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{h}^{+} \mathrm{h}^{-}$HFAG Averages

The Square Dalitz Plot

$$
\begin{aligned}
& m^{\prime} \equiv \frac{1}{\pi} \arccos \left(2 \frac{m_{K}+\pi^{+}-m_{K+\pi^{+}}^{\min }}{m_{K+\pi^{+}}-1} m_{K+\pi^{+}}-1\right) \\
& \theta^{\prime} \equiv \frac{1}{\pi} \theta_{\pi}+\pi+
\end{aligned}
$$

Transformation of coordinates "Zooms" into the areas around the boundary of the conventional Dalitz plot

- Increases resolution in those areas of interest Used for DP histograms in most analyses

sPlots

[Nucl. Instrum. Meth. A 555 (2005) 356-369]

The sPlots technique is a statistical tool that allows the distribution of a variable for a particular species, e.g. signal, to be reconstructed from the PDFs of other variables An sWeight is assigned to each event according to:

$$
{ }_{s} W_{n}\left(y_{e}\right)=\frac{\sum_{j=1}^{N_{S}} \mathbf{V}_{n j} f_{j}\left(y_{e}\right)}{\sum_{k=1}^{N_{S}} N_{k} f_{k}\left(y_{e}\right)}
$$

Where NS is the number of species, V is the covariance matrix from the fit, f are the PDFs of the variables y, the subscript n refers to the species of interest and the subscript e refers to the event under consideration
These sWeights have the property that: $\sum_{e s} W_{n}\left(y_{e}\right)=N_{n}$

A histogram in a variable (not in the set y) can then be filled with each event weighted by its sWeight
This histogram will reproduce the e.g. signal distribution of that variable
sWeights can also be used e.g. in order to correctly deal with signal reconstruction efficiency (ε) variation on an event-by-event basis
In this case a branching fraction can be correctly determined from:

$$
B F=\sum_{n} \frac{{ }_{n} W_{n}\left(y_{e}\right)}{\varepsilon_{n} N_{B \bar{B}}}
$$

