BaBar Symposium 2009: theory overview

Einan Gardi (Edinburgh)

- Experimental confirmation of the SM picture of flavour physics
- Beginning of a new era: precision flavour physics

BaBar Symposium 2009: theory overview

Outline:

- Flavour as a window into physics beyond the Standard Model Flavour is complementary to searches at colliders, having
 - sensitivity to symmetries
 - a far reach in energy, slow decoupling
- Specific measurements and the status of the Unitarity Triangle:
 - Time-dependent CP asymmetries: measuring the phases
 - Semileptonic decays: $|V_{\rm ub}/V_{\rm cb}|$ and the role of QCD

richness: a major asset of flavour physics.

The Standard Model

gauge interaction (bosons):

CPT invariance (Charge–Parity–Time reversal)

Broken symmetries:

- electroweak symmetry: Higgs
 Massive vector bosons: $M_W = 80$ GeV, $M_Z = 91$ GeV
- flavour symmetry: Yukawa interaction
 - quarks have different masses and couplings to Higgs
 - flavour–changing currents \implies CP violation

3 generations of matter:

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Elementary Particles

Quark

- SM flavour symmetry: 3 identical copies of the first generation; within each: $u \rightarrow W^+ d$.
- The symmetry is broken by masses $\implies u \rightarrow W^+ d'$

- **P** violation! $\iff V_{CKM}$ complex, at least 3 generations (KM 1973)
- Higgs and neutral electroweak currents do not modify flavour: no Flavour Changing Neutral Currents (FCNC).

Flavour changing neutral current: $b \rightarrow s\gamma$

- Standard Model (SM): at tree level
 no *flavour–changing neutral currents*.
 b → s transition is suppressed, occurring through loops.
- Beyond the SM the width is modified: $b \rightarrow s\gamma \text{ provides a strong constraint.}$
- Currently: good agreement with SM. Uncertainties: $\sim 10\%$.

models with charged Higgs

The small non-diagonal elements of CKM

CKM is *nearly diagonal* — Wolfenstein parametrization:

$$V_{\text{CKM}} = \begin{bmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix} \simeq \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

key point: off-diagonal elements are small,

 $\lambda = 0.2258 \pm 0.0014$ $A \simeq 0.82,$

$$|V_{\rm ub}| \simeq 4 \cdot 10^{-3}$$
 $|V_{\rm td}| \simeq 8.5 \cdot 10^{-3}$

so in the SM flavour and CP-violating transitions are suppressed. Most extensions of the SM (e.g. SUSY) introduce additional d.o.f. that would propagate in loops and change the amplitudes! \implies flavour-changing processes are sensitive to new physics!

$B^0 \leftrightarrow \overline{B}^0$ mixing and the New Physics "flavour problem"

Beyond the SM: new particles that induce flavour changing interactions.

Example: new W' interaction with mixing parameters U_{ud} :

$$M_{12}^{\text{data}}/M_{12}^{\text{SM}} = \Delta_d$$

- Potentially large effect: the SM off-diagonal terms are small $|V_{\rm td}| \simeq 8.5 \cdot 10^{-3}$
- W' with generic flavour structure $U_{\rm tb}^* U_{\rm td} \sim \mathcal{O}(1)$ is already excluded at LHC energies.

$$M_{W'} \gtrsim \frac{U_{\rm tb}^* U_{\rm td}}{V_{\rm tb}^* V_{\rm td}} M_W \simeq 10 \,{\rm TeV}$$

Measuring the CKM parameters

Many measurements from **b** decays:

 V_{cb} and V_{ub} : SM tree–level decays

Measuring the CKM parameters

Many measurements from **b** decays:

- \checkmark V_{cb} and V_{ub}: SM tree–level decays
- V_{td} and V_{ts} involve loops \implies sensitive to new physics!

CKM and the Unitarity Triangle

$$V_{\text{CKM}} V_{\text{CKM}}^{\dagger} = I \implies V_{\text{ud}} V_{\text{ub}}^{*} + V_{\text{cd}} V_{\text{cb}}^{*} + V_{\text{td}} V_{\text{tb}}^{*} = 0$$

$$V_{\text{CKM}} = \begin{bmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix} \qquad V_{\text{ud}} V_{\text{ub}}^{*} \qquad V_{\text{td}} V_{\text{tb}}^{*} \qquad V_{\text{td}} V$$

The goal: over-constraining the triangle

CKM and the Unitarity Triangle

 $V_{\rm CKM} V_{\rm CKM}^{\dagger} = I \implies$ $V_{\rm ud}V_{\rm ub}^* + V_{\rm cd}V_{\rm cb}^* + V_{\rm td}V_{\rm tb}^* = 0$

$$V_{\rm CKM} = \begin{bmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{bmatrix} \qquad V_{\rm ud}V_{\rm ub}^* \qquad V_{\rm td}V_{\rm tb}^*$$

Constraining the unitarity triangle

Now:

many precise contraints

Especially angles!

KM mechanism confirmed.

$B^0 \leftrightarrow \bar{B}^0$ mixing

Meson mass matrix is non-diagonal in the flavour basis due to $O^{(6)} = (\bar{b}\gamma^{\mu}(1-\gamma_5)d)^2$. Mass eigenstates: $|B_{L,H}\rangle = p |B^0\rangle \mp q |\bar{B}^0\rangle$; $q/p \simeq e^{-2i\beta}$. $\implies B^0$ and \bar{B}^0 oscillate into each other with a frequency $\Delta m \equiv m_H - m_L = 2|\mathcal{M}_{12}|$.

 $\Delta m_{B_d} = 0.507 \pm 0.005 \, \mathrm{ps}^{-1},$

 $\Delta m_{B_s} = 17.77 \pm 0.12 \, \mathrm{ps}^{-1}$,

Lattice QCD needed to extract $|V_{td}|!$ — talk by Christine Davies

 P(B⁰ → \overline{B}^0) depends on $|q/p|^2$ — how can we measure β ? time-dependent CP asymmetry in interference between mixing and decay Bigi & Sanda (1981)

CP violation: interference between mixing and decay

Consider a final state $f_{\rm CP}$ that can be reaches from both B_0 and \overline{B}_0 :

$$\Gamma\left(\underline{B^{0}} \to f_{\rm CP}\right) = \left| A\left(\underline{B^{0}(0)} \to \underline{B^{0}(t)}\right) A\left(\underline{B^{0}} \to f_{\rm CP}\right) + \underbrace{A\left(\underline{B^{0}(0)} \to \overline{B^{0}(t)}\right)}_{A\left(\overline{B^{0}} \to f_{\rm CP}\right)} A\left(\overline{B^{0}} \to f_{\rm CP}\right) \right|^{2}$$

Time-dependent CP asymmetry in $B_d^0 \rightarrow c\bar{c} K_S^0$:

I

$$a_{c\bar{c}K_S}(t) \equiv \frac{\Gamma\left(\bar{B}^0(t) \to c\bar{c}K_S\right) - \Gamma\left(\bar{B}^0(t) \to c\bar{c}K_S\right)}{\Gamma\left(\bar{B}^0(t) \to c\bar{c}K_S\right) + \Gamma\left(\bar{B}^0(t) \to c\bar{c}K_S\right)} = \sin(2\beta)\sin(\Delta mt)$$

β from Penguin decays

- $B^0 \rightarrow J/\Psi K_S$ is a tree decay new physics in the mixing only.
- Penguin modes $b \rightarrow ss\bar{s}$, e.g. $B^0 \rightarrow \phi K^0$ are sensitive to new physics also through the decay.
- $B^0 \rightarrow J/\Psi K_S$ and $B^0 \rightarrow \phi K^0$ are theoretically clean: single decay diagram. QCD effects drop out in the asymmetry.

Measuring the weak angle α : $B \rightarrow \pi \pi, \rho \rho$

new results!

- using several modes and isospin symmetry
- **precision**: $\pm 5\%$!

The crucial role of semileptonic B decays

- $|V_{ub}/V_{cb}|$ (Unitarity Triangle side) is determined by <u>tree-level</u> Weak decays, b → ulv and b → clv, free of physics BSM
- Confronted with constraints involving loops <u>sensitive</u> to physics beyond the SM, e.g. $\sin(2\beta)$ from $B^0 \leftrightarrow \overline{B}^0$.

Inclusive vs. Exclusive semileptonic B decays

$$\Gamma = \frac{G_F^2 |V_{\rm qb}|^2}{192\pi^3} m_b^5 (1 + \cdots)$$

Total width easy to compute:

confinement is $\mathcal{O}(\Lambda^2/m_b^2)$

but — in $b \rightarrow u$ kinematic cuts are

essential to reduce $b \rightarrow c$ background

$$d\Gamma/dq^2 = \frac{G_F^2 |V_{\rm qb}|^2}{192\pi^3} \left| f_+(q^2) \right|^2$$

Experimentally: Good S/B

but — proportional to form factor:

confinement is $\mathcal{O}(1)$ — need

Lattice — talk by Christine Davies

Inclusive and Exclusive have different strengths — complementarity!

Inclusive semileptonic $b \rightarrow u$ decays

Inclusive $b \rightarrow u$ has an overwhelming charm background:

$$\frac{\Gamma(b \to u l^- \bar{\nu})}{\Gamma(b \to c l^- \bar{\nu})} = \frac{|V_{\rm ub}|^2}{|V_{\rm cb}|^2} \simeq \frac{1}{50} \qquad \bar{B} \int_{\bar{V}} \int$$

J $b \rightarrow c$ events always have $M_X > 1.7$ GeV — cuts distinguish them!

Many experimental analyses; measured branching fraction varies: 20%–70% of the total.

 \implies To extract $|V_{\rm ub}|$ we need to compute the spectrum.

- OPE does not apply in a restricted kinematic region. For small M_X there are large corrections...
- Major progress on the theory side. Different approaches:
 - Expansion in shape functions, matched with OPE (BLNP)
 - Resummed perturbation theory + power corrections (DGE)
 - OPE-based structure-function parametrization (GGOU)

World Average $|V_{ub}|$ from inclusive decays (using DGE)

CLEO, Belle & BaBar performed several inclusive measurements of the partial $b \rightarrow u$ width with different kinematic cuts on E_l , q^2 , M_X , etc.

- Each measurement is translated by HFAG into a value for |V_{ub}|
- The results are all consistent.

Comparing the different theoretical approaches

analysis

Semileptonic decays: up-to-date results, tensions

<u>Tension I:</u> $|V_{cb}|$ Inclusive vs. Exclusive

$$|V_{\rm cb}|_{\rm incl.} = (41.5 \pm 0.5 \pm 0.6) \cdot 10^{-3}$$
 Gambino et al.
 $|V_{\rm cb}|_{\rm excl.} = (38.2 \pm 0.5 \pm 1.1) \cdot 10^{-3}$ Laiho et al.

<u>Tension II:</u> $|V_{ub}|$ Inclusive vs. Exclusive

 $egin{aligned} |V_{
m ub}|_{
m incl.} &= (4.2 \pm 0.2 \pm 0.2) \cdot 10^{-3} & {
m DGE, BLNP, GGOU} \ & {
m theory \ uncertainty \ dominated \ by \ b-quark \ mass \ m_b} &= 4.24 \pm 0.04 \ {
m GeV} \ & |V_{
m ub}|_{
m excl.} &= (3.4 \pm 0.1 \pm 0.4) \cdot 10^{-3} & {
m HPQCD, \ Fermilab/MILC, \ LCSR \end{aligned}$

Inclusive vs. Exclusive is perplexing: new physics at tree level? Right-handed currents are not excluded... [Chen& Nam 2008] <u>Tension III:</u> Inclusive semileptonic $|V_{ub}|$ vs. $sin(2\beta)$:

 $|V_{\rm ub}|_{\sin(2\beta)} = 3.5 \pm 0.2$ Global fits (UTfit, CKMfitter)

New physics in $sin(2\beta)$? — not conclusive

Leptonic decays: more tension

Tension IV: $|V_{ub}|$ from leptonic $B \to \tau \nu$ vs. $\sin(2\beta)$: Standard Model: $\mathcal{B}(B \to \tau \nu_{\tau}) = \frac{G_F^2 m_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2}\right) f_B^2 |V_{ub}|^2 \tau_B$ decay constant: $f_B = 0.216 \pm 0.022$ GeV [HPQCD 2005]

 $\mathcal{B}(B \to \tau \nu_{\tau}) = (1.73 \pm 0.35) \cdot 10^{-4}$

CKMfitter based on BaBar 08, Belle 09

New physics in $sin(2\beta)$? — still not conclusive.

Conclusions

- The B factories (and Tevatron) confirmed the CKM picture!
- Severe constraints on new physics: extra particles in the TeV range generate very little $\Delta F = 1$ and $\Delta F = 2$ transitions. \implies Either not there, or have a special flavour structure
- Complementarity: high—energy frontier and precision measurements in the flavour sector (energy reach, properties)
- We do not yet have a theory of flavour. If we are lucky hints may come from investigating the EW symmetry breaking.
- Good control of QCD is essential for precision flavour physics.
 A lot of progress. The experiments gave the proper boost.
- Experimental effort in B physics continues: LHCb, super B factories, promising a lot of interesting physics.

LHC and (super) B factories: B physics program

Highly complementary program in (super) B factories and LHCb:

B factories

- \checkmark semileptonic decays: $|V_{\rm ub}|$
- mixing in B_d^0 , tree & penguin modes
- In the second secon

<u>LHC</u>

- $B \to DK: measure \ \gamma$
- mixing in B_s^0 : $B_s \to \psi \phi$ (tree)
 & penguin modes
- rare FCNC decays, e.g. $B \to K^* \mu^+ \mu^-, B_s \to \mu^+ \mu^-$

Measuring the weak angle α : theory

QCD Factorization: separating computable short–distance effects from universal long-distance effects to leading order in Λ/m_b , all orders in α_s : [BBNS (2000)]

Form factor is not sufficient — there are HARD spectator interactions: \implies Need to quantify distribution amplitudes.

Ways beyond the Standard Model

Two complementary elements:

- high—energy frontier: search for new heavy particles
- flavour physics: precision measurements at low energy that are sensitive to symmetry properties.

SM flavour- and CP-violating interactions are *highly constrained*

- \implies a variety of rare transitions (with well-predicted SM rates)
- \implies sensitivity to new physics!
- lepton sector (ν oscillations, LFV $\mu \rightarrow e\gamma$, $e \text{ EDM}, \ldots$)
- quark sector (B physics, K physics, ...)

Theoretical tool box

- **Solution** Effective weak Hamiltonian: integrating out W and t.
- $m_b \gg \Lambda_{QCD}$:
 - factorization: form factors, distribution amplitudes,...
 - heavy quark expansion in powers of Λ_{QCD}/m_b
 - perturbation theory: expansion in $\alpha_s(m_b)$
- $\Lambda_{QCD} \gg m_s, m_d, m_u$: SU(2) or SU(3) global symmetries
- QCD sum rules on the lightcone suitable for decay into light energetic partons. Unfortunately, not precise.
- Lattice gauge theory systematic regularization of QCD!
 Difficult to deal with light energetic particles.