Charm Mixing at BABAR

B-Factories as Charm Factories

Charm Mixing Results

BABAR D^0 Mixing Measurements $-D^0 \rightarrow K^+ \pi$ (WS) $-D^0 \rightarrow K^+ K^-, \pi^+ \pi \text{ vs } K^- \pi^+$ (Lifetime ratio) $-D^0 \rightarrow K_s \pi^+ \pi$ (TD Dalitz)

Mixing in D^0 mesons

- Neutral meson mixing has been already observed in the *K* (1956), *B_d* (1987) and *B_s* (2006) systems
- Why is *D*⁰ mixing interesting ?
 - It completes the picture of quark mixing already observed in other systems
 - Provides new information about processes with down-type quarks in the mixing loop diagram
 - It is an important step towards the observation of CP violation in the Charm sector
 - New physics may be present depending on the measured values of the mixing parameters

D⁰ Mixing Formalism

Neutral *D* mesons are produced D_1, D_2 have masses M_1, M_2 and as *flavor eigenstates* D^0 and $\overline{D^0}$ widths Γ_1, Γ_2 Mixing occurs when there is a and decay via : $i\frac{\partial}{\partial t} \left(\begin{array}{c} D^{0}(t) \\ \overline{D}^{0}(t) \end{array} \right) = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \right) \left(\begin{array}{c} D^{0}(t) \\ \overline{D}^{0}(t) \end{array} \right)$ non-zero mass difference $\Delta M = M_1 - M_2$ as mass eigenstates D_1 , D_2 or lifetime difference $\Delta \Gamma = \Gamma_1 - \Gamma_2$ $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$ For convenience define quantities x $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ and y where $|q|^2 + |p|^2 = 1$ and $x = \frac{\Delta M}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma}$ $\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}$ where $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

Status of Mixing in 2006

Generic Mixing Analysis

Mixing in "Wrong Sign" Decays ($D^0 \rightarrow K^+ \pi^-$)

Two types of WS Decays:

- Doubly Cabibbo-supressed (DCS)
- Mixing followed by Cabibbo-Favored (CF) decay

Two ways to reach same final state \Rightarrow interference!

$$\frac{d\Gamma}{dt}[|D^{0}(t)\rangle \rightarrow f] \propto e^{-\Gamma t} \left(R_{\rm D} + \sqrt{R_{\rm D}}y' \ \Gamma t + \frac{x'^{2} + y'^{2}}{4}(\Gamma t)^{2}\right)$$
DCS decay
Interference between DCS and mixing
Mixing

 $\delta_{\!K\!\pi}$ $\,$ strong phase difference between CF and DCS decay amplitudes $\,$

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \qquad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$$

WS Fit with no Mixing

WS Fit with Mixing

Observations of Mixing in $D^0 \rightarrow K^+ \pi^-$

Evidence for mixing from *BaBar* (3.9 σ) and confirmation by *CDF* (3.8 σ)

CLEOc has measured $\delta_{K\pi}$, used to translate x'~x and y'~y, Phys. Rev. D 78, 012001 (2008)

Carlos A. Chavez

QMUL, 1st April 2009

Lifetime Ratio Analysis

- In the absence of CPV, D_1 is CP-even and D_2 is CP-odd
 - Measurement of lifetimes τ for D^0 decays to *CP*-even and *CP*-odd final states lead to a measurement for y_{cp}

$$y_{CP} \equiv \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} - 1, \quad h = K \text{ or } \pi$$

• Allowing for *CPV*, measure the *D*⁰ and *D*⁰ asymmetry

$$\Delta Y = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} \frac{\tau_{hh}^+ - \tau_{hh}^-}{\tau_{hh}^+ + \tau_{hh}^-} = -(1 + y_{cp})A_{\Gamma}$$

- Tagged events

 (from D^{*+}! D⁰π⁺, decays)
- Most of systematic error cancels in the lifetime ratio.
- Bkg related systematics don't.
- Require:p*>2.5GeV/c, σ_t <0.37ps
- Purity of selection 98%, 98%, 92% for KK, Kπ, ππ, respec.

Lifetime Ratio Measurements

Lifetime Difference Results

Mixing in WS $D^0 \rightarrow K^+\pi^-\pi^0$ Decays

• Analysis formally similar to the wrong sign $D^0 \rightarrow K^+\pi^-$ analysis but now mixing depends on position in Dalitz plot.

$$\frac{dN_{\bar{f}}(s_{12}, s_{13}, t)}{ds_{12}ds_{13}dt} = e^{-\Gamma t} \{ |A_{\bar{f}}|^2 + \bigcup DCS \\ |A_{\bar{f}}||\bar{A}_{\bar{f}}| [y \cos \delta_{\bar{f}} - x \sin \delta_{\bar{f}}] (\Gamma t) + \\ Mixing \rightarrow \frac{x^2 + y^2}{4} |\bar{A}_{\bar{f}}|^2 (\Gamma t)^2 \}$$
(1)
$$A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{13}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A_{\bar{f}} = A_{\bar{f}}(S_{13}, S_{13}) = \langle K^* \pi^* \pi^* |H|D_{\bar{f}} \rangle \\ A$$

• The measured mixing parameters are:

 $\begin{aligned} \mathbf{x}_{\kappa\pi\pi}' &= \mathbf{x}\cos\delta_{\kappa\pi\pi^{0}} + \mathbf{y}\sin\delta_{\kappa\pi\pi^{0}} \\ \mathbf{y}_{\kappa\pi\pi}' &= \mathbf{y}\cos\delta_{\kappa\pi\pi^{0}} - \mathbf{y}\sin\delta_{\kappa\pi\pi^{0}} \end{aligned}$

where $\delta_{K\pi\pi^0}$ = phase difference between DCS $D^0 \rightarrow \rho K^+$ and CF $\overline{D}{}^0 \rightarrow \rho K^+$ reference amplitudes (and cannot be determined in this analysis)

Results : No evidence of CPV $x'_{\kappa\pi\pi^0} = \begin{bmatrix} 2.61^{+0.57}_{-0.68}(stat.) \pm 0.39(syst.) \end{bmatrix}$ % $y'_{\kappa\pi\pi^0} = \begin{bmatrix} -0.06^{+0.55}_{-0.64}(stat.) \pm 0.34(syst.) \end{bmatrix}$ %

• Main systematics:

- Dalitz plot model
- Event selection criteria
- Signal and background yields

signal box:

0.1449<⊿m<0.1459 GeV/c² 1.8495<m_{κππ}<1.8795 GeV/c² RS signal purity: 99% WS signal purity: 50%

Carlos A. Chavez

Mixing in $D^0 \rightarrow K_s \pi \pi$ Decays

where \mathcal{A} and \mathcal{A} are amplitudes for decay to D^0 or \overline{D}^0 as functions of phase-space variables, and

$$m_{\pm} = \left\{ egin{array}{ccc} m(K_s, \pi^{\pm}) & D^{*+} o D^0 \pi^+ \ m(K_s, \pi^{\mp}) & D^{*-} o \overline{D}^0 \pi^- \end{array} & e_{1,2}(t) = \exp\left(-i(m_{1,2} - i\Gamma_{1,2}/2)t
ight)$$

Measures x and y: no strong phase, sensitive to x directly

 $D^0 \rightarrow K_s \pi \pi$ Results

- (a) Decay-time distribution for total Dalitz-plot region.
- (b) Ratio of decay-time distributions for $K^*(892)^+$ and $K^*(892)^-$ regions.

Collective Evidence for D⁰ Mixing

BABAR: PRL 98, 211802 (2007)	$D^0 \rightarrow K^+ \pi^-$ decay time analysis		
BELLE: PRL 98, 211803 (2007)	$D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis	3.2 <i>o</i>	
BELLE: PRL 99,131803 (2007)	$D^0 \rightarrow K_s \pi^+ \pi^-$ time dependent amplitude analysis		
CDF: PRL 100, 121802 (2008)	$D^0 \rightarrow K^+ \pi^-$ decay time analysis	3.8 <i>0</i>	
BABAR: PRD 78 , 011105 R (2008)	$D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis		
BABAR: arXiv:0807, 4544 (2008)	$D^0 \rightarrow K^+ \pi^- \pi^0$ time dependent amplitude analysis		
all mixing results combined by HFAG:			

Summary

- Collective evidence for D⁰ mixing is compelling when combining Belle and BABAR measurements
 - The no-mixing point is excluded at ~10 σ , including systematic uncertainties
 - However, no single measurement exceeds 4σ
- Average values of the mixing parameters are $x \sim 1$ %, $y \sim 0.8$ %
 - compatible with the upper range of standard model predictions
- No evidence of *CP* violation in *D*⁰ decays
- **BABAR** work ongoing:
 - Lifetime ratio analysis of $D^0 \rightarrow KK$, and $D^0 \rightarrow K\pi$ untagged samples
 - Dalitz analysis of $D^0 \rightarrow K_s \pi \pi$ decays

Backup Slides

*Mixing in WS D*⁰ \rightarrow *K*⁺ π ⁻ π ⁰ Decays

- Find CF amplitude A_f from timeintegrated fit to RS Dalitz plot
 - isobar model expansion
- Use this in time-dependent fit to WS plot to determine A_f and mixing parameters.

• Results:

 $\begin{aligned} \mathbf{x}'_{K\pi\pi^0} &= \left[2.61^{+0.57}_{-0.68}(stat.) \pm 0.39(syst.) \right] \% \\ \mathbf{y}'_{K\pi\pi^0} &= \left[-0.06^{+0.55}_{-0.64}(stat.) \pm 0.34(syst.) \right] \% \end{aligned}$

Main systematics:

1.8495<*m*_{*K*ππ}<1.8795 GeV/*c*²

- Dalitz plot model
- Event selection criteria
- Signal and background yields

No evidence for CPV

Belle $D^0 \rightarrow K_s \pi \pi$ analysis

Dalitz fit model

Refinement of Belle φ_3 measurement 13 BW resonances + non-resonant contribution

TABLE I: Fit results for Dalitz plot parameters.

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_{2}^{*}(1430)^{-}$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_{2}^{*}(1430)^{+}$	0.276 ± 0.010	-106 ± 3	0.0013
$K^{*}(1410)^{+}$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

New Physics in Charm ?

 Δ : Standard model predictions for x

- □: Standard model predictions for y
- •: New physics predictions for x
 - Hard to see a clear prediction
 - Pushing the limit down excludes models
 <u>Try to separate x and y!</u>

Standard Model mixing predictions

24

Rec. Luminosity ~710 fb⁻¹

Data collected 660M *BB* pairs, 860M cc events, 1200M τ 's, 2.6M B_s, etc.