# FCC status

F. Zimmermann on behalf of the FCC Collaboration

LHeC Coordination Group 2 October 2015





many thanks to M. Benedikt and J. Gutleber

## Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

### International FCC collaboration (CERN as host lab) to study:

*pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T  $\Rightarrow$  100 TeV *pp* in 100 km

- 80-100 km infrastructure in Geneva area
- e+e collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology







## Hadron collider parameters

| Parameter                                                         | FCC-hh |           | SPPC | LHC        | HL LHC |  |  |  |  |
|-------------------------------------------------------------------|--------|-----------|------|------------|--------|--|--|--|--|
| collision energy cms [TeV]                                        | 100    |           | 71.2 | 1.         | 4      |  |  |  |  |
| dipole field [T]                                                  |        | 16        | 20   | 8.3        |        |  |  |  |  |
| # IP                                                              | 2 n    | nain & 2  | 2    | 2 main & 2 |        |  |  |  |  |
| bunch intensity [10 <sup>11</sup> ]                               | 1      | 1 (0.2)   | 2    | 1.1        | 2.2    |  |  |  |  |
| bunch spacing [ns]                                                | 25     | 25 (5)    | 25   | 25         | 25     |  |  |  |  |
| luminosity/lp[10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 5      | 25        | 12   | 1          | 5      |  |  |  |  |
| events/bx                                                         | 170    | 850 (170) | 400  | 27         | 135    |  |  |  |  |
| stored energy/beam [GJ]                                           | 8.4    |           | 6.6  | 0.36       | 0.7    |  |  |  |  |
| synchr. rad. [W/m/apert.]                                         |        | 30        | 58   | 0.2        | 0.35   |  |  |  |  |





- Two parameter sets for two operation phases:
  - Phase 1 (baseline): 5 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (peak),
     250 fb<sup>-1</sup>/year (averaged)
     2500 fb<sup>-1</sup> within 10 years (~HL LHC total luminosity)
  - Phase 2 (ultimate): ~2.5 x 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> (peak), 1000 fb<sup>-1</sup>/year (averaged)
     → 15,000 fb<sup>-1</sup> within 15 years
  - Yielding total luminosity O(20,000) fb<sup>-1</sup> over ~25 years of operation



#### LUMINOSITY GOALS FOR A 100-TEV PP COLLIDER

Ian Hinchliffe<sup>a</sup>, Ashutosh Kotwal<sup>b</sup>, Michelangelo L. Mangano<sup>c</sup>, Chris Quigg<sup>d</sup>, Lian-Tao Wang<sup>e</sup>

<sup>a</sup> Phyiscs Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

<sup>b</sup> Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA Duke University, Durham, North Carolina 27708, USA

<sup>c</sup> PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

 <sup>d</sup> Theoretical Physics Department, Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 USA
 Institut de Physique Théorique Philippe Meyer, École Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05, France

<sup>e</sup> Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 USA

April 24, 2015

#### Abstract

We consider diverse examples of science goals that provide a framework to assess luminosity goals for a future 100-TeV proton-proton collider.

### 20 ab<sup>-1</sup> OK for physics

## **Luminosity evolution**



phase 1:  $\beta^*=1.1 \text{ m}$ ,  $\Delta Q_{tot}=0.01$ ,  $t_{ta}=5 \text{ h}$ phase 2:  $\beta^*=0.3 \text{ m}$ ,  $\Delta Q_{tot}=0.03$ ,  $t_{ta}=4 \text{ h}$ 





## **High-Energy LHC**

### FCC study continues effort on high-field collider in LHC tunnel 2010 EuCARD Workshop Malta; Yellow Report CERN-2011-1





EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider - HE-LHC10, E. Todesco and F. Zimmermann (eds.), EuCARD-CON-2011-001; arXiv:1111.7188; CERN-2011-003 (2011)

- based on 16-T dipoles developed for FCC-hh
- extrapolation of other parts from the present (HL-)LHC and from FCC developments



### LEP – highest energy e<sup>+</sup>e<sup>-</sup> collider so far

circumference 27 km in operation from 1989 to 2000 maximum c.m. energy 209 GeV maximum synchrotron radiation power 23 MW



FCC News Frank Zimmermann LHeC-CG, 2 October 2015

## **Lepton collider key parameters**

| parameter                                                         | l               | FCC-ee       | CEPC      | LEP2 |        |
|-------------------------------------------------------------------|-----------------|--------------|-----------|------|--------|
| energy/beam [GeV]                                                 | 45              | 120          | 175       | 120  | 105    |
| bunches/beam                                                      | 13000-<br>60000 | 500-<br>1400 | 51-98     | 50   | 4      |
| beam current [mA]                                                 | 1450            | 30           | 6.6       | 16.6 | 3      |
| luminosity/IP x 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 21 - 280        | 5 - 11       | 1.5 - 2.6 | 2.0  | 0.0012 |
| energy loss/turn [GeV]                                            | 0.03            | 1.67         | 7.55      | 3.1  | 3.34   |
| synchrotron power [MW]                                            |                 | 100          |           | 103  | 22     |
| RF voltage [GV]                                                   | 0.2-2.5         | 3.6-5.5      | 11        | 6.9  | 3.5    |

FCC-ee: 2 separate rings

**CEPC** baseline: single beam pipe like LEP

Dependency FCC-ee: crab-waist vs. baseline optics and 2 vs. 4 IPs



## e<sup>+</sup>e<sup>-</sup> luminosity vs. c.m. energy







## **Site investigations**

| Alignment Shaft Tools           | Alignment Location | Geology Intersected by |        |        |         |      | Shafts Shaft Depths |         |          |          |  |
|---------------------------------|--------------------|------------------------|--------|--------|---------|------|---------------------|---------|----------|----------|--|
| Choose alignment option         | +                  |                        | s      | haft D | epth (r | n)   |                     | Geolo   | gy (m)   |          |  |
| 93km quasi-circular 🔹           |                    | Point                  | Actual | Min    | Mean    | Мах  | Quatemary           | Molasse | Urgonian | Calcaire |  |
| Tunnel depth at centre: 299mASL | e                  | A                      | 203    |        |         | 212  |                     |         |          |          |  |
|                                 |                    | в                      | 227    |        |         |      |                     |         |          |          |  |
| Gradient Parameters             |                    | С                      | 218    |        |         |      |                     |         |          |          |  |
| Azimuth (*): -15                |                    | D                      | 153    |        |         |      |                     |         |          |          |  |
| Slope Angle x-x(%): 5           |                    | E                      | 247    |        |         |      |                     |         |          |          |  |
| Slope Angle v-v(%): 0           |                    | F                      | 262    |        |         | 304  |                     |         |          |          |  |
| otope xilge y f(4).             |                    | G                      | 396    | 392    |         | 396  |                     |         |          |          |  |
| CALCULATE                       |                    | н                      | 266    |        |         | 322  |                     |         |          |          |  |
| Alignment centre                |                    | 1                      | 146    | 141    | 144     |      |                     |         |          |          |  |
| X: 2499812 Y: 1106889           |                    | J                      | 248    | 247    |         |      |                     |         |          |          |  |
| HC Intersection CP 1 CP 2       | A ST Free Start    | К                      | 163    |        |         | 164  |                     |         |          |          |  |
| Angle                           | H G                | L                      | 182    |        | 184     |      |                     |         |          |          |  |
| Depth 589m 589m                 |                    | Total                  | 2711   | 2607   | 2724    | 2867 | 585                 | 2185    | 0        | 0        |  |

#### Alignment Profile

### • 90 – 100 km fits geological situation well

### LHC suitable as potential injector











### **Superconductor performance**





## FCC magnet technology program

| Main Milestones of the FCC Magnets Technologies |                                                        |                                                    |            |     |      |      |     |      |      |      |    |    |     |
|-------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|------------|-----|------|------|-----|------|------|------|----|----|-----|
| Milestone                                       | Desc                                                   | cription                                           | 15         | 201 | 6 20 | )17  | 20  | 2018 |      | 2019 |    | 20 | 21  |
| M0                                              | High J <sub>c</sub> wire development                   | High J <sub>c</sub> wire development with industry |            |     |      |      |     |      |      |      |    |    |     |
| M1                                              | Supporting wound conduc                                | tor test program                                   |            |     |      |      |     |      |      |      |    |    |     |
| M2                                              | Design & manufacture 16T ERMC with existing wire       |                                                    |            |     |      |      |     |      |      |      |    |    |     |
| M3                                              | Design & manufacture 16 T RMM with existing wire       |                                                    |            |     |      |      |     |      |      |      |    |    |     |
| M4                                              | Procurement of 35 km enhanced wire                     |                                                    |            |     |      |      |     |      |      |      |    |    |     |
| M5                                              | Design & manufacture 16T demonstrator magnet           |                                                    |            |     |      |      |     |      |      |      |    |    |     |
| M6                                              | Procurement 70 km of enhanced high J <sub>c</sub> wire |                                                    |            |     |      |      |     |      |      |      |    |    |     |
| M7                                              | EuroCirCol design 16T accelerator quality model        |                                                    |            |     |      |      |     |      |      |      |    |    |     |
|                                                 | Manufacture and test of the 16 T EuroCirCol model      |                                                    |            |     |      |      |     |      |      |      |    |    |     |
|                                                 |                                                        |                                                    |            | De  |      |      |     |      |      |      |    |    |     |
| ERMC                                            | (16 I mid-plane field)                                 | RIVINI (16 I in 50 mm cavit                        | <b>y</b> ) | De  | mons | stra | tor | (16  | 5 I, | 50   | mn | ng | ap) |





## SC RF R&D towards FCC

Many pertinent R&D and construction efforts at CERN:

- R&D and production of *Nb/Cu* sputtered 401- MHz LHC cavities, and of HL-LHC 401-MHz crab cavities (with US-LARP and U. Lancaster),
- fabrication of 802 MHz cavities & CM's for HL-LHC (with JLAB & CEA)
- testing 704-MHz Nb cavities, complete string and CM assembly (w ESS)
- continue R&D on "high-Q" technologies such as "N<sub>2</sub> doping" or Nb<sub>3</sub>Sn coating (with Cornell and FNAL)
- contributions to int'l projects like ILC & PIP-II
- optimized cool-down schemes
- new fabrication techniques

   (3D-print, rapid forming, seamless cavities...)
- **new materials** (Nb(Ti)N, V<sub>3</sub>Si, TBBCO...)
- RF power sources energy conversion efficiency
- more efficient cryogenics (optimum T?);
   improved cryomodule design





Dotted lines – only changing P drive Solid lines – changing P drive and Voltage



## **EuroCirCol EU Horizon 2020 Grant**

### EC contributes with funding to FCC-hh study



- Core aspects of hadron collider design: arc & IR optics design, 16 T magnet program, cryogenic beam vacuum system
- **Recognition of FCC Study by European Commission.**





## **FCC International Collaboration**

### 62 institutes 23 countries + EC





#### Status: 28 September 2015



FCC News Frank Zimmermann LHeC-CG, 2 October 2015

# **FCC Collaboration Status**

### 62 collaboration members & CERN as host institute, 28 September 2015

ALBA/CELLS, Spain Ankara U., Turkey U Belgrade, Serbia **U Bern, Switzerland BINP**, Russia CASE (SUNY/BNL), USA **CBPF, Brazil CEA Grenoble, France CEA Saclay, France CIEMAT, Spain CNRS**, France **Cockcroft Institute, UK** U Colima, Mexico CSIC/IFIC, Spain **TU Darmstadt, Germany TU Delft, Netherlands DESY, Germany TU Dresden, Germany** Duke U, USA **EPFL**, Switzerland **GWNU**, Korea

**U** Geneva, Switzerland **Goethe U Frankfurt, Germany GSI**, Germany U. Guanajuato, Mexico Hellenic Open U, Greece **HEPHY**, Austria **U** Houston, USA IIT Kanpur, India **IFJ PAN Krakow, Poland INFN**, Italy **INP Minsk, Belarus** U Iowa, USA IPM, Iran UC Irvine, USA Istanbul Aydin U., Turkey JAI/Oxford, UK **JINR Dubna**, Russia FZ Jülich, Germany **KAIST, Korea KEK**, Japan **KIAS, Korea** 

King's College London, UK KIT Karlsruhe, Germany Korea U Sejong, Korea MEPhl, Russia MIT, USA **NBI, Denmark** Northern Illinois U., USA **NC PHEP Minsk, Belarus** U. Liverpool, UK U Oxford. UK **PSI, Switzerland** U. Rostock, Germany Sapienza/Roma, Italy UC Santa Barbara, USA **U** Silesia, Poland **TU Tampere, Finland** TOBB, Turkey **U** Twente, Netherlands TU Vienna, Austria Wroclaw UT, Poland



**FCC Week 2016** 







Istituto Nazionale di Fisica Nucleare Sezione di Roma





