

Critical issues

-Choice of multi-turn ERL configuration

- → the only operating multi-turn ERL is in Novosibirsk
 using normal conducting RF (5mA beam current → 20mA)
- \rightarrow all other multi-turn ERL proposals are only studies

-Post CDR increase in the electron beam current: 6.6mA \rightarrow 25mA

- \rightarrow 25mA with 3 re-circulations and ERL
 - → 150mA inside SC RF cavities!
 - ➔ all operating ERL facilities feature substantially smaller currents (ALICE: 6.5mA, JLab 8mA)

CDR Choices: ERL as LHeC Baseline

Super Conducting Recirculating Linac with Energy Recovery

Choose $\frac{1}{3}$ of LHC circumference \rightarrow Two 1 km long 10 GeV SC

tune-up dump 10-GeV linac	comp. RF	lin	acs with	
10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	1	1
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20	3.75	50
Beta Funtion $\beta^*_{x,y}$ [m]	0.05	0.10	0.1	0.12
rms Beam size $\sigma^*_{x,y}$ [µm]	4	4	7	7
rms Beam divergence $\sigma \Box^*_{x,y}$ [µrad]	80	40	70	58
Beam Current @ IP[mA]	1112	25	430 (860)	6.6
Bunch Spacing [ns]	25	25	25 (50)	25 (50)
Bunch Population	2.2*10 ¹¹	4*10 ⁹	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹
Bunch charge [nC]	35	0.64	27	(0.16) 0.32

Proposal to build a TF to validate LHeC design choices-Need to test and validate beam current limit in SC RF-Need to test beam stability limit and design HOM coupler

-Need to study operational issues:

- Machine setup and boot-strapping
 (no closed orbit but requires correct path length)
- → Transient effects (current ramp up & beam abort)
- \rightarrow Machine protection issues and implications
- ➔ Identify and develop required beam diagnostics (dynamic range and required bandwidth)
- \rightarrow develop operational experience and application tools

Auxiliary applications:

-A test setup presents a unique infrastructure on its own

- → Could eventually serve as injector for the LHeC
- \rightarrow Launched early on discussions with other potential clients

-Interesting auxiliary application for CERN investment:

- → SC magnet and cable development: quench tests with beam
- → Generic SC RF development: Cavity tests with beam
 - \rightarrow relevant for any SC RF development (CC in SPS)
- → Test facility for Beam Diagnostics (after closure of CTF3)
- → Detector component tests?
- → Physics applications (electron and photon beam via Compton)

- Baseline parameter choices:
 - -3 re-circulations
 - -Beam current of at least 10mA
 - -Use of LHeC proto-type SC RF Cryomodule
 - -Beam energy of approximately 1 GeV (chosen for physics)
 - -Sufficient space and infrastructure for SC magnet tests

With a photo-injector the facility could test a range of RF frequencies [E. Jensen]

-Staged implementation to build up expertize in steps and to tailor facility to different applications and tests

Staged Installation

Stage 1 – 2 CMs, test installation – injector, cavities, beam dump.

Stage 2 – 2 CMs, set up for energy recovery, 2...3 passes

Stage 3 – 4 CMs, set up arcs for higher energies – reach up to 905 MeV

PERLE Parameters: CDR by end 2015:

Parameter	Value		
injection energy			
RF frequency			
acc. voltage per cavity			
# cells per cavity	5		
, total cavity length			
# cavities per cryomodule	4		
RF power per cryomodule			
# cryomodules	2-4		
max. acceleration per module pass			
bunch repetition			
injected beam current			
nominal bunch charge			
number of passes	1	3	
top energy			
duty factor	CW		

PERLE Footprint:

Passage and shielding: overall footprint

- Shielding and passage ~4m on each direction
- Assuming 50cm concrete shielding
- Can be reinforced with heavier materials if space is a concern or for special areas
- Minimum passage for interventions1.20 m

Other systems:

Questions during last IAC:

- -Why do we to need to build a test facility @ CERN?
- → Develop operational experience and application tools @ CERN
- \rightarrow We are proposing a major new facility at CERN (LHeC)
- → Approval will require a clear demonstration of key technology
- → Critical timeline for realizing LHeC during LHC lifetime
- -Risk for an external test facility:
- \rightarrow No control of timeline \rightarrow delays!
- → Might miss technology challenges and options for system designs
- Do not develop operational expertize for a new type of machine
 @ CERN

IAC outcome:

-Develop a Conceptual Design Report for a minimal test facility @ CERN

- → Footprint, and required infrastructure
- → Reduced version of PERLE Stage 2

Stage 2 – 2 CMs, set up for energy recovery, 2...3 passes

Building 2003 CTF3 combiner rings

Currently CTF3 to end operation in 2016

It is a beam facility: shielding, access, galleries, etc

Complicated topology. Expensive to clean out

Cryogenics?

Reserve Transparencies

2015 LHeC Coordination Group meeting 2nd October 2015

Oliver Brüning, CERN

14

Total space needs

46x17m ~ 800m²

- double the area of the accelerator itself to allocated all
- services. 1500 m²
- some services like RF power generation or power supplies may be placed on a different level than the accelerator itself,
- We do not consider here the use of the interior part of the ring as the scape route would be compromised.
- It may however be used to house a low energy dump which itself needs to be shielded and who will be on restricted access.

This is a significant size comparable to CFT3, AD or ISOLDE

Around point 18:

No space available in any of the buildings on the site but lots of empty space around it.

Why not build a new facility building in the north storage area?

Cryogenics water power and other services already available. May be upgraded Accessibility for quench tests

Completely new construction

Motivation: Accelerator Technology Development

Energy Recovery Linac concept: First proposal 50 years ago M. Tigner: "A Possible Apparatus for Electron Clashing-Beam Experiments", Il Nuovo Cimento Series 10, Vol. 37, issue 3, pp 1228-1231,1 Giugno 1965

First Tests: Done at SCA @ Stanford in 1986

Interesting concept for FELs and Compton photon light sources, and high current electron cooler concepts and colliders

Recombination Pattern:

Arc's lengths tuned to avoid bunches in the same bucket Lattice adjusted to achieve a nearly constant bunch spacing

Long Range Wakefields Threshold Current:

Multi-bunch tracking simulations with PLACET2 and optimal recombination pattern 26 dipole modes of the SPL cavity scaled to 802 MHz

100 particles per bunch – BBU triggered by statistical fluctuations of the centroid

Offending mode builds up in the vertical plane (coupling between a specific mode frequency, time of flight and the vertical betatron tune).

Threshold current >5 times higher than the nominal (2e9 particles per bunch)