# Current Status of MSSM Higgs Sector and Future Prospects at the HL-LHC

#### Arghya Choudhury

Consortium for Fundamental Physics Department of Physics and Astronomy University of Sheffield, UK

January 12, 2016

Supersymmetry: from M-theory to the LHC

10-12 January 2016, University of Kent

#### Plan of the Talk:

- Brief introduction to MSSM Higgs Sector.
- Global analysis and available pMSSM parameter space.
- Present status of MSSM from LHC 7/8 TeV data.
- Future reach at HL-LHC
- Conclusions.

Talk based on : B. Bhattacherjee, A. Chakraborty, A. Choudhury Phys. Rev. D 92 (2015) 093007 [arXiv:1504.04308].

#### Higgs Discovery: July 4, 2012



A recent for the variations whose steps consist on a process-pose consistent with mix ALLO Selector  $\alpha$ . We UK's pre-consistent has desired or approximately 4.8 ft.  $^{-1}$  collected at  $\sqrt{s} = 7.76$  % at 27.1 and 2.8 ft.  $^{-1}$  3.5 ft.

C 2012 CRIN, Published by Elsevier B.V. All risks reserved







#### Higgs production and decay:





- Dominant Production Mode: gluon-gluon fusion.
- At  $M_h = 125$  GeV,  $h \to \gamma \gamma \sim 0.22\%$ ,  $h \to WW^* \sim 21.5\%$ ,  $h \to ZZ^* \sim 2.6\%$ ,  $h \to b\bar{b} \sim 57.7\%$ ,  $h \to gg \sim 8.6\%$ ,  $h \to \tau \tau \sim 6.3\%$ .

#### What do we know about 125 GeV Higgs?



- Significance  $\sim$  10  $\sigma$
- Data consistent with SM hypothesis.
- Room for New Physics.
- Still 20 30 % deviation of Higgs coupling from SM is allowed.

#### A quick guide to SUPERSYMMETRY:



- In supersymmetric theories every boson has its fermionic counterpart and vice versa.
- In the limit of exact supersymmetry, each SUSY particle (sparticle) are identical to the corresponding particle except for their spin quantum number.
- Superpartners are yet to be observed. Therefore SUSY must be broken and one requires soft SUSY breaking mechanism.
- Experiments → A sparticle must be heavier than the corresponding particle.
- R-parity Conservation: The lightest sparticle (LSP) is stable.

## Strong and EW sectors after 8/13 TeV:

In simplified model scenarios ightarrow

- Gluino is excluded upto 1.5 1.8 TeV.
- Squark masses below 1 TeV are excluded.
- Stop masses upto 200 700 GeV are excluded.
- Also strong limit on EW sectors.

 See Overview talk by Alan Barr. Talk by Giuseppe Lerner & Dave Lewis for Third Generation Squarks. Talk by Yusufu Shehu for EW sectors.

# Higgs sector of Minimal Supersymmetric SM (MSSM):

$$\mathcal{W}_{MSSM} = \widehat{U}^c Y_u \widehat{Q} \widehat{H}_u - \widehat{D}^c Y_d \widehat{Q} \widehat{H}_d - \widehat{E}^c Y_e \widehat{L} \widehat{H}_d + \mu \widehat{H}_d \widehat{H}_u.$$

| Superfield      | SU(3) | SU(2) <sub>L</sub> | $U(1)_Y$          | Particles                |
|-----------------|-------|--------------------|-------------------|--------------------------|
| $\widehat{H}_d$ | 1     | 2                  | $-\frac{1}{2}$    | $(H_d, \widetilde{H}_d)$ |
| $\widehat{H}_u$ | 1     | 2                  | $\frac{1}{2}^{-}$ | $(H_u, \widetilde{H}_u)$ |

$$H_d = \begin{pmatrix} h_d^0 \\ h_d^- \end{pmatrix}, \text{ and } H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix},$$
$$\widetilde{H}_d = \begin{pmatrix} \widetilde{h}_d^0 \\ \widetilde{h}_d^- \end{pmatrix}, \text{ and } \widetilde{H}_u = \begin{pmatrix} \widetilde{h}_u^+ \\ \widetilde{h}_u^0 \end{pmatrix}.$$

- minimality signifies that this model contains only SM particles with their superpartners and the minimum number (two) of Higgs doublets.
- Higgsinos are chiral fermions. Second Higgs superfield with opposite hypercharge is needed to make the theory anomaly free.
- After the EW symmetry breaking → We are left with five physical Higgs bosons:
  - Two charged Higgs bosons :  $H^{\pm}$ ,
  - Two CP-even Higgs bosons :  $h^0$  (lighter) and  $H^0$  (heavier),
  - One CP-odd Higgs boson :  $A^0$ .

#### MSSM Higgs sector:

At the tree level, the Higgs sector of MSSM is described by two parameters :

- the mixing angle  $\alpha$  in the neutral CP even sector and and  $\tan \beta$ , where  $\tan \beta$  is the ratio of the vacuum expectation values.
- Or by pseudoscalar mass  $M_A$  and tan  $\beta$ .
- $tan2\alpha = \frac{M_h^2 + M_H^2}{M_A^2 M_Z^2} tan2\beta$
- At the tree level  $M_h \leq M_Z$ .
- The higher order corrections  $\rightarrow$  shift upper bound  $\rightarrow$   $M_h \stackrel{<}{\sim} 135$  GeV.
- With dominant one loop correction from the top/stop sector:

$$m_h^2 pprox M_Z^2 \cos^2 2eta \ + rac{3g_2^2 m_t^4}{8\pi^2 M_W^2} \left[ \ln \left( rac{m_{ ilde{t}_1} m_{ ilde{t}_2}}{m_t^2} 
ight) + rac{X_t^2}{m_{ ilde{t}_1}^2 m_{ ilde{t}_2}} \left( 1 - rac{(A_t - \mu \cot eta)^2}{12 m_{ ilde{t}_1} m_{ ilde{t}_2}} 
ight) 
ight]$$

#### MSSM Higgs sector:

At the tree level, the Higgs sector of MSSM is described by two parameters :

- the mixing angle  $\alpha$  and tan  $\beta$ ,
- Or by pseudoscalar mass  $M_A$  and tan  $\beta$ .
- $tan2\alpha = \frac{M_h^2 + M_H^2}{M_A^2 M_Z^2} tan2\beta$
- Radiative corrections to the Higgs boson mass matrix involving various SUSY parameters can modify the tree level value of  $\alpha$  significantly.
- $\tan 2\alpha = \frac{M_A^2 + M_Z^2}{M_A^2 M_Z^2 + \epsilon/\cos 2\beta} \, \tan 2\beta$ , where  $\epsilon = \frac{3G_F}{\sqrt{2}\pi^2} \frac{m_t^4}{\sin^2\beta} \, \log\left[1 + \frac{M_S^2}{m_t^2}\right]$  (corrections in the leading  $m_t^4$  one-loop approximation)
- Global fit analysis considering various Higgs coupling measurements may constrain the MSSM parameter space.

#### Global fit analysis in MSSM, nMSSM, 2HDM, EFT.....

J. Ellis and T. You, [arXiv:1204.0464]. J. Ellis and T. You, [arXiv:1207.1693]. S. F. King et al., arXiv:1211.5074. J. Ellis and T. You, [arXiv:1303.3879]. K. J. de Vries, E. A. Bagnaschi, O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. J. Dolan and J. R. Ellis et al., [arXiv:1504.03260]. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, [arXiv:1205.2699]. T. Plehn and M. Rauch, [arXiv:1207.6108]. G. Cacciapaglia, A. Deandrea, G. D. La Rochelle and J. B. Flament, [arXiv:1210.8120]. T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia, [arXiv:1211.4580]. G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, [arXiv:1212.5244]. K. Cheung, J. S. Lee and P. Y. Tseng, [arXiv:1302.3794]. P. P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, [arXiv:1303.3570]. A. Djouadi and G. Moreau, [arXiv:1303.6591]. K. Cheung, J. S. Lee, E. Senaha and P. Y. Tseng, [arXiv:1403.4775]. J. de Blas et al., [arXiv:1410.4204]. K. Cheung, J. S. Lee and P. Y. Tseng, [arXiv:1501.03552]. M. Endo, T. Moroi and M. M. Nojiri, [arXiv:1502.03959]. K. Cheung, J. S. Lee and P. Y. Tseng, [arXiv:1310.3937]. G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, [arXiv:1306.2941]. A. Celis, V. Ilisie and A. Pich, [arXiv:1302.4022]. W. Altmannshofer, S. Gori and G. D. Kribs, [arXiv:1210.2465 [hep-ph]]. Y. Bai, V. Barger [arXiv:1210.4922]. S. Chang, S. K. Kang, J. P. Lee, K. Y. Lee, S. C. Park and J. Song, [arXiv:1210.3439]. H. S. Cheon and S. K. Kang, [arXiv:1207.1083]. U. Ellwanger and C. Hugonie, [arXiv:1405.6647]. D. Carmi, A. Falkowski et al., [arXiv:1202.3144]. W. F. Chang, W. P. Pan and F. Xu, [arXiv:1303.7035]. S. Banerjee et al., [arXiv:1308.4860]. J. R. Espinosa etal., [arXiv:1207.7355]. J. Ellis, V. Sanz and T. You, [arXiv:1410.7703]. J. Ellis, V. Sanz and T. You, [arXiv:1404.3667].....

# Global $\chi^2$ analysis and available pMSSM parameter space :

#### Experimental inputs from LHC and Tevatron

| Channel    | Signal str          | Production mode         |      |      |      |
|------------|---------------------|-------------------------|------|------|------|
|            | ATLAS               | CMS                     | ggF  | VBF  | Vh   |
| $\mu(ggh)$ | $1.32 \pm 0.38$     | $1.12^{+0.37}_{-0.32}$  | 100% | -    | -    |
| $\mu(VBF)$ | $0.8 \pm 0.7$       | $1.58^{+0.77}_{-0.68}$  | -    | 100% | -    |
| $\mu(Wh)$  | $1.0 \pm 1.6$       | $-0.16^{+1.16}_{-0.79}$ | -    | -    | 100% |
| $\mu(Zh)$  | $0.1^{+3.7}_{-0.1}$ | -                       | -    | -    | 100% |

• Signal strengths of  $h \to \gamma \gamma$  channel by ATLAS (arXiv:1408.7084) and CMS (arXiv:1407.0558).

| Channel                | Signal str             | Production mode        |      |     |     |
|------------------------|------------------------|------------------------|------|-----|-----|
|                        | ATLAS                  | CMS                    | ggF  | VBF | Vh  |
| $\mu(ggh + bbh + tth)$ | $1.66^{+0.51}_{-0.44}$ | $0.80^{+0.46}_{-0.36}$ | 100% | -   | -   |
| $\mu(VBF + Vh)$        | $0.26^{+1.64}_{-0.94}$ | $1.7^{+2.2}_{-2.1}$    | -    | 60% | 40% |

• Signal strengths of  $h \rightarrow ZZ^*$  channel by ATLAS (arXiv:1408.5191) and CMS (arXiv:1312.5353).

| Channel                     | Signal str             | Production mode        |      |      |      |
|-----------------------------|------------------------|------------------------|------|------|------|
|                             | ATLAS                  | CMS                    | ggF  | VBF  | Vh   |
| $\mu(ggF)$                  | $1.02^{+0.29}_{-0.26}$ | -                      | 100% | -    | -    |
| $\mu(VBF)$                  | $1.27^{+0.53}_{-0.45}$ | -                      | -    | 100% | -    |
| $\mu(0/1\ jet)$             | -                      | $0.74^{+0.22}_{-0.20}$ | 97%  | 3%   | -    |
| $\mu$ (VBF tag)             | -                      | $0.60^{+0.57}_{-0.46}$ | 17%  | 83%  | -    |
| $\mu$ (Vh tag $(2l2\nu2j))$ | -                      | $0.39^{+1.97}_{-1.87}$ | -    | -    | 100% |
| $\mu$ (Wh tag(3l3 $\nu$ ))  | -                      | $0.56^{+1.27}_{-0.95}$ | -    | -    | 100% |

Signal strengths of  $h \to WW^*$  channel by ATLAS (arXiv:1412.2641) and CMS (arXiv:1312.1129).

| Channel   | Signal strength $(\mu)$ |               | Pro | $_{ m mode}$ |      |
|-----------|-------------------------|---------------|-----|--------------|------|
|           | ATLAS                   | CMS           | ggF | VBF          | Vh   |
| μ(Vh tag) | $0.51^{+0.40}_{-0.37}$  | $1.0 \pm 0.5$ | -   | -            | 100% |

• Signal strengths of  $h \rightarrow b\bar{b}$  channel by ATLAS (arXiv:1409.6212) and CMS (arXiv:1310.3687).

#### Experimental inputs from LHC and Tevatron:

| Channel         | Signal s               | Production mode |       |      |      |
|-----------------|------------------------|-----------------|-------|------|------|
|                 | ATLAS                  | CMS             | ggF   | VBF  | Vh   |
| $\mu(ggF)$      | $1.93^{+1.45}_{-1.15}$ | -               | 100 % | -    | -    |
| $\mu(VBF + Vh)$ | $1.24^{+0.58}_{-0.54}$ | -               | -     | 60%  | 40%  |
| μ (0-jet)       | -                      | $0.34 \pm 1.09$ | 96.9% | 1.0% | 2.1  |
| μ (1-jet)       | -                      | $1.07 \pm 0.46$ | 75.7% | 14%  | 10.3 |
| μ (VBF tag)     | -                      | $0.94 \pm 0.41$ | 19.6  | 80.4 | -    |
| μ (Vh tag)      | -                      | $-0.33\pm1.02$  | -     | -    | 100% |

| • | Signal strengths of $h 	o 	au	au$ channel by ATLAS |
|---|----------------------------------------------------|
|   | (ATLAS-CONF-2014-06) and CMS                       |
|   | (arXiv:1401.5041).                                 |

| Channel                            | Signal strength $(\mu)$ | Production mode |    |      |
|------------------------------------|-------------------------|-----------------|----|------|
|                                    | Tevatron                | ggF VBF         |    | Vh   |
| $\mu(H \rightarrow \gamma \gamma)$ | $6.14^{+3.25}_{-3.19}$  | 78%             | 5% | 17%  |
| $\mu(H\to WW^*)$                   | $0.85^{+0.88}_{-0.81}$  | 78%             | 5% | 17%  |
| $\mu(H \rightarrow b\bar{b})$      | $1.59^{+0.69}_{-0.72}$  | -               | -  | 100% |

Signal strengths of  $h \to \gamma \gamma$ ,  $WW^*$ , and  $b\bar{b}$  channel by CDF and  $D\emptyset$  collaborations (arXiv:1303.6346, 1409.5043).

#### Other Constraints:

- $2.82 \times 10^{-4} < Br(B_s \to X_s \gamma) < 4.04 \times 10^{-4}$
- $1.57 \times 10^{-9} < Br(B_s \to \mu^+ \mu^-) < 4.63 \times 10^{-9}$

## Signal Strength:

For gluon-gluon fusion process and for a generic final state  $h \to X\bar{X}$  ( $\gamma\gamma$ ,  $WW^*$ ,  $ZZ^*$ , etc.), then one can define the signal strength variable  $\mu$ , assuming narrow-width approximation, as:

$$\mu_{ggF}(X\bar{X}) = \frac{\Gamma(h \to gg)}{\Gamma(h_{SM} \to gg)} \times \frac{Br(h \to X\bar{X})}{Br(h_{SM} \to X\bar{X})},$$

where h is a observed 125 GeV Higgs boson and  $h_{SM}$  is the SM Higgs boson. Similarly, if the Higgs boson is produced via VBF fusion process and it decays to  $X\bar{X}$ , then one can define,

$$\mu_{VBF}(X\bar{X}) = \frac{\Gamma(h \to WW)}{\Gamma(h_{SM} \to WW)} \times \frac{Br(h \to X\bar{X})}{Br(h_{SM} \to X\bar{X})}.$$

#### MSSM parameter space scan:

$$\begin{split} 1 < \tan \beta < 50, & 100 \text{ GeV} < \textit{M}_{A} < 600 \text{ GeV}, \\ -8000 \text{ GeV} < \textit{A}_{t}, \textit{A}_{b} < 8000 \text{ GeV}, & 100 \text{ GeV} < \mu < 8000 \text{ GeV}, \\ 100 \text{ GeV} < \textit{M}_{\mathrm{Q3}}, & \textit{M}_{\mathrm{U3}} < 8000 \text{ GeV}, & 100 \text{ GeV} < \textit{M}_{\mathrm{D3}} < 8000 \text{ GeV}, \end{split}$$

while we fix the following parameters since they have little impact on our analysis,

$$\begin{split} M_1 = 100 \text{ GeV}, & M_2 = 2000 \text{ GeV}, & M_3 = 3000 \text{ GeV}, \\ M_{\text{L}_{1,2,3}} = M_{\text{E}_{1,2,3}} = 3000 \text{ GeV}, & M_{\text{Q}_{1,2}} = 3000 \text{ GeV}, & M_{\text{U}_{1,2}} = M_{\text{D}_{1,2}} = 3000 \text{ GeV}, \end{split}$$

lacktriangle we compute  $\chi^2$  for all the scanned points, defined as:

$$\chi^2 = \sum_i \frac{(\overline{\mu}_i - \mu_i)^2}{\Delta \mu_i^2}$$

- $\mu_i$  ( $\overline{\mu}_i$ ) experimentally observed signal strength (MSSM) for a particular production/decay mode i.  $\Delta\mu_i \to$  experimental error.
- ullet contribution originating from different production mode:  $\overline{\mu}_i = \sum T_i^j \widehat{\mu}_j$

# Global $\chi^2$ analysis:

- Consider altogether 28 data points.
- A random scan for approximately 100 million points.
- The minimum value of  $\chi^2$  for SM is 15.744 with  $\chi^2/\mathrm{d.o.f} = \chi^2/28 = 0.562$ .
- For MSSM we obtain  $\chi^2_{\rm min}=$  15.013 with  $\chi^2/{\rm d.o.f}=\chi^2/20=$  0.75.
- $1\sigma$  and  $2\sigma$  allowed parameter in  $M_A-\tan\beta$  plane  $\to$   $\chi^2=\chi^2_{\min}+2.3$  and  $\chi^2=\chi^2_{\min}+6.18$ .

#### Parameter space allowed in $M_A$ - tan $\beta$ plane:



- Allowed parameter space after global fit.
- Also satisfy the flavour physics constraints on Br(b  $\to s\gamma$ ) and Br( $B_s \to \mu^+\mu^-$ ).

#### Effect of the flavour physics constraints:



- (a) without any flavor constraint (left panel).
- (b) only after imposing  $Br(b \to s\gamma)$  constraint (middle panel).
- (c) only after imposing  $Br(B_s \to \mu^+ \mu^-)$  constraint (right panel).
  - $M_A \leq 350~{\rm GeV}$  and  $\tan\beta \geq 25$  are excluded by  ${\rm Br}(B_s \to \mu^+\mu^-)$ .
  - $M_A \leq 350~{
    m GeV}$  with  $\tan \beta \leq ~8$  are excluded by  ${
    m Br}(b \to s \gamma)$  constraint.

#### Alignment without decoupling:



In the MSSM, the couplings (at the tree level) of the CP-even Higgs bosons (h, H) to SM gauge bosons/fermions are:

$$g_{hVV} = \sin(\beta - \alpha) \ g_V$$

$$g_{HVV} = \cos(\beta - \alpha) \ g_V$$

$$g_{hdd} = -\sin\alpha/\cos\beta g_f = (\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)) \ g_f$$

$$g_{huu} = -\cos\alpha/\sin\beta g_f = (\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)) \ g_f$$

$$g_{Hdd} = -\cos\alpha/\cos\beta g_f = (\cos(\beta - \alpha) + \tan\beta\sin(\beta - \alpha)) \ g_f$$

$$g_{Huu} = -\sin\alpha/\sin\beta g_f = (\cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha)) \ g_f$$

## Alignment without decoupling:



- Alignment Limit : h is SM like i.e.,  $g_{hVV} \sim 1$  and  $g_{HVV} \sim 0$ .
- Heavier CP even Higgs boson couplings become highly suppressed.
- In decoupling region,  $M_A >> M_Z$ ,  $(\beta \alpha) \sim \pi/2$
- Regions with light  $M_A$  ( $\leq$  400 GeV) satisfying the alignment limit is perfectly allowed by the current data.
- One is thus not always forced to be in the decoupling limit to comply with LHC data.

#### Correlations of various Higgs signal strength variables:



- the partial widths  $\Gamma(h \to ZZ)$  and  $\Gamma(h \to WW)$  remain almost unaltered w.r.t. SM.
- $\Gamma(h \to b\bar{b})$  and  $\Gamma_{tot}$  have increased while  $\Gamma(h \to gg)$  has decreased for most of the scanned data points.

#### SUSY QCD corrections:

• In an effective Lagrangian approach :

$$L_{hbar{b}} = -rac{m_b}{v_{SM}}igg(rac{1}{1+\Delta_b}igg)igg(-rac{\sinlpha}{\coseta}igg)igg(1-rac{\Delta_b}{ aneta anlpha}igg)bar{b}h$$



• Loop corrections (in powers of  $\alpha_s \tan \beta$ ) involving heavier sparticles can significantly modify the b quark mass and it's Yukawa coupling from its tree level predictions.

$$\bullet \ \epsilon = \left(\frac{1}{1 + \Delta_b}\right) \times \left(1 - \frac{\Delta_b}{\tan\beta\tan\alpha}\right)$$

- $\Delta_b$  is mostly positive and varies within 10-15%.
- Effect of this variation of  $\Delta_b$  on  $\epsilon$  is small.

# Partial widths and branching ratios for $b\bar{b}$ and $\tau^+\tau^-$ :



- Ratios of the partial decay widths (branching ratios) for  $\tau^+\tau^-$  with the tree level Higgs Yukawa couplings  $\frac{\sin\alpha}{\cos\beta} \to 20\text{-}30\%$  modifications.
- ullet Being the dominant decay mode o change in BR(h o bar b) is small.
- Interplay of the total Higgs decay width and individual Higgs branching ratios along with a mild dependence of  $\Delta_b$ .

# Bounds on MSSM heavy Higgses from LHC-8TeV direct searches:

- Neutral Higgs boson searches
  - ullet Search for H with  $\gamma\gamma$  final states. (CMS-PAS-HIG-14-006)
  - Search for *H* with *WW* final state. (CMS-PAS-HIG-13-027)
  - Search for H with hh ( $b\bar{b}b\bar{b}$  and  $b\bar{b}\gamma\gamma$ ) final states. (CMS-PAS-HIG-13-032,CMS-PAS-HIG-14-013)
  - Search for  $H/A \rightarrow \tau^+\tau^-$  final states. (1409.6064, 1408.3316)
  - Search for A with Zh final states. (1502.04478, CMS-PAS-HIG-14-011)
- Charged Higgs boson searches
  - Search for  $H^\pm$  with  $\tau\nu$  (1412.6663, CMS-PAS-HIG-14-020) and  $c\bar{s}$  final states (1302.3694, CMS-PAS-HIG-13-035).
  - $\bullet$  Search for  $H^\pm$  with  $t\bar{b}$  final states. (CMS-PAS-HIG-13-026)
- Bounds set by the ATLAS and CMS collaborations on the masses and BRs of the neutral and charged Higgs bosons from 8 TeV data.

#### Search for H with $\gamma\gamma$ , WW final states.:



- Br(H  $\to \gamma \gamma$ )  $\sim 10^{-6} 10^{-7}$ .
- Due to alignment limit (i.e.  $(\beta \alpha) \sim \frac{\pi}{2}) \to Br(H \to WW)$  highly suppressed.

# Search for H with hh $(b\bar{b}b\bar{b}$ and $b\bar{b}\gamma\gamma)$ final state:



- 4b final state is experimentally challenging.
- $bb\gamma\gamma$  channel has less background contamination and very good di-photon mass resolution.
- Br(H  $\rightarrow$  hh) sizable only for small tan  $\beta$  ( $\leq$  5).
- For  $M_A \ge 350$  GeV,  $t\bar{t}$  opens up and dominates.

## Search for H/A with $\tau^+\tau^-$ final states:



- $g_{Hf_df_d} = -\cos\alpha/\cos\beta g_{SM}$ ;  $g_{Af_df_d} = -\tan\beta g_{SM}$ .
- For fixed  $\alpha$ , both the couplings  $Hf_d\bar{f}_d$  and  $Af_d\bar{f}_d$  increases with  $\tan \beta$ .
- $\tan \beta \geq 10$ , H and A decays to  $b\bar{b}$  ( $\sim 90\%$ ) and  $\tau^+\tau^-$  ( $\sim 10\%$ ).
- Production of H/A is also primarily controlled by  $\tan \beta$ .
- Entire regions with tan  $\beta > 20$  are excluded.

#### Search for A with Zh final states:



- Br(A  $\rightarrow$  Zh) sizable  $\rightarrow$  with low tan  $\beta$  and  $2M_t > M_A > (M_h + M_Z)$ .
- One can fully reconstruct the mass of A.
- ATLAS and CMS data are not sensitive enough to impose any additional constraints.

#### Search for $H^{\pm}$ with $\tau \nu$ and $c\bar{s}$ final states:



- $g_{H^{\pm}\bar{\iota}\iota d} \propto m_d \tan\beta (1+\gamma_5) + m_{\iota\iota}\cot\beta (1-\gamma_5)$ .
- For small  $\tan \beta$ ,  $H^{\pm}$  exclusively decays to  $t\bar{b}$
- For large values of tan  $\beta$ ,  ${\rm Br}(H^\pm \to \tau^\pm \nu_\tau) \sim 10\%$ .
- Main production mechanism :  $pp \rightarrow tbH^{\pm}$ .

#### Future search limits for H with $4\ell$ final states :



- Br( $H \to ZZ$ ) is very small ( $\sim 10^{-3}$  to  $10^{-5}$ )  $\to$  consistent with the alignment limit.
- Most of the parameter space points are beyond the reach of 14 TeV LHC with  $\mathcal{L}=3000~{\rm fb}^{-1}.$

#### Search for $A \rightarrow Zh$ with $\ell^+\ell^-b\bar{b}$ final state:



 Only a very small region of the parameter space will be excluded by the HL-LHC data.

ATL-PHYS-PUB-2013-016; CMS-PAS-FTR-13-024

# Search for H with di-higgs $(H o hh o b\bar{b}\gamma\gamma)$ final states:

- Single H production cross section can be up to two orders of magnitude larger compared to the direct h pair production.
- It can also have non-trivial effects on the self coupling measurement of the 125 GeV Higgs. B. Bhattacherjee, AC, Phys. Rev. D 91 (2015) 073015.



- $BR(H \rightarrow hh)$  is substantial only for smaller values of tan  $\beta$ .
- The most dominant production mechanism  $\rightarrow$  ggF.
- Events with two *b*-jets, two photons and no isolated leptons are selected.
- Reconstruct two higgs from  $b\bar{b}$  and  $\gamma\gamma$ .
- $M_{b\bar{b}\gamma\gamma} = M_H \pm 50 \text{ GeV}.$
- Low  $\tan \beta$  (< 10) regions are expected to be probed at the HL-LHC.

## Search for H/A with $t\bar{t}$ final state :

- For  $M_A > 350$  GeV and low-moderate tan  $\beta$ ,  $H/A \rightarrow t\bar{t}$  dominates.
- Large cross section of the heavy Higgs *H* via ggF process.
- Extremely difficult to extract the  $t\bar{t}$  resonance peak from the huge SM  $t\bar{t}$  continuum background.
- We perform a detailed signal-background analysis.
- One top decays leptonically and one decays hadronically.
- Events with at least 4 jets with  $p_T > 50$  GeV (two are b tagged), one isolated leptons ( $p_T > 30$  GeV) are selected.
- Select events with  $t\bar{t}$  invariant mass between  $M_H\pm$  25 GeV.
- SR-loose  $\rightarrow$  Missing energy ( $\not\!\!E_T$ ) > 50 GeV.
- SR-medium  $\rightarrow \not\!\!E_T > 100$  GeV.
- SR-tight  $\rightarrow \not\!\!E_T > 100$  GeV,  $(p_T)_{i_1,i_2} > 100$  GeV

## Search for H/A with $t\bar{t}$ final state :

| Channel   | Number of Events at 3000 fb <sup>-1</sup>          |            |        |            |         |                |  |
|-----------|----------------------------------------------------|------------|--------|------------|---------|----------------|--|
|           | $M_H = 400 \text{ GeV} \mid M_H = 500 \text{ GeV}$ |            |        |            | $M_H =$ | $600~{ m GeV}$ |  |
|           | Signal                                             | $t\bar{t}$ | Signal | $t\bar{t}$ | Signal  | $t\bar{t}$     |  |
| SR-loose  | 1268                                               | 104612     | 9658   | 420572     | 26842   | 563452         |  |
| SR-medium | 8                                                  | 1741       | 1584   | 69232      | 9656    | 194698         |  |
| SR-tight  | -                                                  | -          | 4      | 637        | 2296    | 44894          |  |



- $\sigma_{NNLO}^{t\bar{t}} = 966$  pb.
- $\sigma(pp \to H)_{NLO} \times Br(H \to t\bar{t})$ = 1 pb (assumption).
  - $N_S/N_B$  ratio is very small for all the benchmark points.
  - Statistical significances S for  $M_H = 600$  GeV are 36, 22 and 11 for SR-loose, SR-medium and SR-tight respectively.
  - However, even with 5% systematic uncertainty these numbers reduces to 0.95, 0.99, 1.02 respectively.

## Search for H/A with $t\bar{t}$ final state :



- Very challenging to observe a clear signal of heavy Higgs in the  $t\bar{t}$  invariant mass distribution over the SM background.
- Using angular cuts, the signal significance can be improved. A. Djouadi et al. arXiv:1502.05653
- Inclusion of systematic uncertainties may change the significance drastically.
- $H \to t\bar{t} \to \text{challenging task} \to \text{needs more detailed studies}$ .

## Search for H/A with $\tau^+\tau^-$ final state :

- We assume that H/A are produced via the b-quark associated production process and decays to  $\tau^+\tau^-$ .
- A detailed signal-background analysis following ATLAS-8TeV  $H/A \to \tau_{\rm lep} \tau_{\rm had}$  analysis.
- We identify taus through their one/three prong hadronic decays.
- Events are selected with: one lepton ( $p_T > 50$  GeV), an oppositely charged  $\tau$ -hadron with  $p_T > 50$  GeV, at least one b-tagged jet with  $p_T > 50$  GeV,  $\Delta p_T \equiv p_T(\tau_{\rm had}) p_T({\rm lepton}) > 50$  GeV,  $\sum \Delta \phi \equiv \Delta \phi(\tau_{\rm had}, \not\!\!E_T) + \Delta \phi(\tau_{\rm lep}, \not\!\!E_T) < 3.3$ ,  $\Delta \phi(\tau_{\rm lep}, \tau_{\rm had}) > 2.4$ .
- Reconstructed di-tau invariant mass  $(m_{\tau\tau})$  is within  $M_{\Phi}\pm$  30 GeV  $(\Phi=H/A)$ .
- The dominant SM background processes: Z +jets and  $t\bar{t}$ . Small contributions from W +jets, QCD multi-jets.
- Di-tau invariant mass  $\rightarrow$  the "collinear approximation technique".

#### Search for H/A with $\tau^+\tau^-$ final state :



- Sensitivity at the HL-LHC with 3000  ${\rm fb^{-1}}$  of data assuming 20% and 10% systematic uncertainties.
- The regions with  $\tan \beta > 20$  are already excluded by LHC-8 data.
- The regions with  $\tan \beta$  down to 8 with any values of  $M_A$  can be probed at the HL-LHC.

#### Conclusions:

- Global fit analysis using most updated data (till December 2014) from the LHC and Tevatron.
- The region with  $M_A \leq 350~{\rm GeV}$  and  $\tan\beta \geq 25$  are excluded by the  ${\rm Br}(B_s \to \mu^+\mu^-)$  while  $M_A \leq 350~{\rm GeV}$  with  $\tan\beta \leq 8$  is not favoured by the  ${\rm Br}(b \to s\gamma)$  constraint.
- 200  $< M_A <$  400 can have moderate  $\alpha =$  0.2, while for relatively large values of  $M_A$ ,  $\alpha$  can be as large as  $\sim$  0.8 with small tan  $\beta$ .
- Not always forced to be in the decoupling limit.
- 10 20% deviations from the SM expectations are also observed for various Higgs signal strength variables.
- The 7+8 TeV LHC data for  $\Phi(=H/A) \to \tau^+\tau^-$  put the most stringent bound  $\to$  The entire region with  $\tan \beta > 20$  is excluded.
- At the HL-LHC tan  $\beta$  down to 8 with low to moderate values of  $M_A$  can be probed with  $\tau^+\tau^-$  mode.
- Below  $\tan \beta <$  8, searches via  $H \rightarrow hh$  at the HL-LHC can be very important to probe rest of the parameter space.

# **THANK YOU**

## Back Up

#### $B_s \to \mu^+ \mu^-$



- dominant SM contribution from : Z penguin top loop & W box diagram.
- Br( $B_s \to \mu^+ \mu^-$ ) = 3.1 ± 0.7 ± 0.31(theo.)
- No room for large deviation.
- Susy contribution  $\propto tan^6 \beta/M_A^4$ .

# $Br(B_s \to X_s \gamma)$

- A very small room for any BSM contribution.
- Br( $B_s \to X_s \gamma$ ) = 3.43 ± 0.22 ± 0.21(theo.)
- ullet SM t-W loop contribution almost saturates the experimental value.
- In the MSSM, the dominant contributions to  $Br(B_s \to X_s \gamma)$  come from the  $t-H^\pm$  and  $\tilde{t}_{1,2}-\tilde{\chi}_{1,2}^\pm$ .
- $Br(B_s \to X_s \gamma)|_{\chi^{\pm}} \propto \mu A_t \tan \beta f(m_{\tilde{t}}1, m_{\tilde{t}}2, m_{\tilde{\chi}^+}) \frac{m_b}{\nu(1+\Delta m_b)}$ .
- $Br(B_s \to X_s \gamma)|_{H^+} \propto \frac{(h_t \cos \beta \delta h_t \sin \beta)}{v \cos \beta} g(m_{H^+}, m_t) \frac{m_b}{(1 + \Delta m_b)}$ .
- $\delta h_t = h_t \frac{2\alpha_s}{3\pi} \mu M_{\tilde{g}} \left( \cos^2 \theta_{\tilde{t}} I(m_{\tilde{s}_L}, m_{\tilde{t}_2}, M_{\tilde{g}}) + \sin^2 \theta_{\tilde{t}} I(m_{\tilde{s}_L}, m_{\tilde{t}_1}, M_{\tilde{g}}) \right).$
- Typically, these NLO corrections are known to be important for large values of  $\tan \beta$ .
- NLO corrections are approximately proportional to  $\mu M_{\tilde{g}} an eta$

M. S. Carena, D. Garcia, U. Nierste and C. E. M. Wagner, hep-ph/0010003, hep-ph/9912516.

Back to Page - 18