Electroweak SUSY searches in Compressed SUSY Scenarios using the 3-Lepton+E_Tmiss signature

Supersymmetry: From M-theory to the LHC 12th January 2016

Yusufu Shehu

University of Sussex

Outline

- ★ Description of ATLAS Experiment
- ★ Outline of Supersymmetry
- ★ Motivation for Electroweak SUSY Searches
- ★ Previous 8 TeV Results
- ★ Nature of Compressed Spectra
- ★ Using the Initial State Radiation (ISR) as a Probe into Compressed Scenarios
- **★8 TeV Compressed Spectra Results**
- ★ Looking Into the Future
- ★ Summary & Outlook

The Large Hadron Collider (LHC)

- Large scale particle accelerator and collider 50-150m beneath Franco-Swiss border.
- Collides protons (and sometimes heavy ions) in a large underground ring 27km in circumference.
- Has seven detector experiments including four large detector experiments:

ATLAS CMS LHCb

ALICE

 Smaller more specialised experiments:

> TOTEM MoEdal LHCf

The ATLAS Experiment

- Large **general purpose detector** on the Large Hadron Collider (LHC) ring.
- Designed to **reconstruct** electrons, muons, photons and hadronic jets from pp collisions at LHC.
- Optimized for Higgs boson discovery potential and Beyond-the-Standard Model (BSM) physics.
- Comprised of several **sub-detector** systems

Inner Detector:

High granularity, consists of Silicon microstrip detector, pixel detector and transition radiation tracker

ECAL

Electromagnetic Calorimeter:

contains EM showers. Uses alternate layers of lead absorber plates and liquid Argon (LAr) detector

HCAL

Hadronic Calorimeter:

Contains hadronic showers. Uses alternate layers of iron absorber plates, LAr and scintillating tile technologies

MS

Muon Spectrometer:

4 detector technologies in toroidal B-field. Gives precise measurement of position and momentum of muons

Motivation for Supersymmetry (SUSY)

- At High energies, couplings of electromagnetic, weak and strong forces unite in SUSY models
- SUSY provides a possible Dark
 Matter candidate

- The Higgs mass squared term receives corrections for each SM fermion coupling due to additional higher order loops
- Quadratic divergences arise
- m_h >> observed
- Introduce additional particles with appropriate couplings to remove divergences

5

Supersymmetry: At a Glance

What is it?

- Supersymmetry is a symmetry that relates fermions to bosons
- Symmetry algebra is generated with an operator Q that can transform fermions to bosons and vice versa
- Each SM fermion and boson has a superpartner (sparticles), which have identical hyper-charge, isospin and colour but differ in spin by

- No Sparticles with SM masses observed
- Generate new mass terms via spontaneous SUSY symmetry breaking
- Different possible SUSY breaking mechanisms (not in scope of talk)

Motivation for Electroweak SUSY Searches

arXiv:1507.05525

- Why Electroweak SUSY?
 - Current LHC limits push squark/gluino masses to > 1 TeV.
 - If gauginos and higgsinos are light then weak production will dominate.
 - May lead to signatures with **multiple leptons and** E_T^{miss} low SM background.

SUSY 3-Lepton Signature

Three isolated, hard leptons.

Use sizeable lepton $p_{\scriptscriptstyle T}$ cuts and tight isolation requirements

SUSY 3-Lepton Signature

Three isolated, hard leptons.

Use sizeable lepton $p_{\scriptscriptstyle T}$ cuts and tight isolation requirements

For W-boson mass, using transverse mass calculation with lepton not from Z boson decay.

SUSY 3-Lepton Signature

mass

Three isolated, hard leptons.

Use sizeable lepton $p_{\scriptscriptstyle T}$ cuts and tight isolation requirements

For W-boson mass, using transverse mass calculation with lepton not from Z boson decay

Neutrinos and lightest neutralinos seen as E_{T}^{miss} in final state.

Target with sizeable E_{T}^{miss} requirements.

8 TeV 3L Analyses

Twenty-five signal regions (SRs) to target four decay scenarios for chargino neutralino production. Regions are **statistically combined** for optimal sensitivity. Background estimated using MC and data-driven methods (**Matrix Method**).

Key Variables

Signal region	$SR0\tau a$	$SR0\tau b$	$\mathrm{SR}1 au$	$\mathrm{SR}2\tau\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$
Flavour/sign	$\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$	$\ell^{\pm}\ell^{\pm}\ell'^{\mp}$	$\tau^{\pm}\ell^{\mp}\ell^{\mp},\tau^{\pm}\ell^{\mp}\ell'^{\mp}$	$ au au\ell$	$ au^+ au^-\ell$
b-tagged jet	veto	veto	veto	veto	veto
$E_{ m T}^{ m miss}$	binned	> 50	> 50	> 50	> 60
Other	$m_{\rm SFOS}$ binned	$p_{\mathrm{T}}^{3^{\mathrm{rd}}\ell} > 20$	$p_{\mathrm{T}}^{2^{\mathrm{nd}}\ell} > 30$	$m_{\rm T2}^{\rm max} > 100$	$\sum p_{\mathrm{T}}^{\tau} > 110$
	m_{T} binned	$\Delta \phi_{\ell\ell'}^{\min} \le 1.0$	$\sum p_{\mathrm{T}}^{\ell} > 70$		$70 < m_{\tau\tau} < 120$
			$m_{\ell\tau} < 120$		
The state of the s			$m_{ee}~Z~{ m veto}$		
Target model	$\tilde{\ell}$, WZ -mediated	Wh-mediated	Wh-mediated	$\tilde{ au}_L$ -mediated	Wh-mediated

JHEP 04 (2014)169

Expected distributions of SM background and observed data for $\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}$ in $\mathsf{SR1}\tau$

Expected distributions of SM background and observed data for m_{T2}^{max} in SR2 τa

8 TeV 3L Limits

JHEP 04 (2014)169

Observed and expected 95% CL exclusion contours for $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^{0}$ production for:

 Via Slepton/WZ: large improvements wrt 7 TeV results (blue lines)

NO SUSY YET!!

Y. Shehu - U.of Sussex

Is SUSY hiding in Compressed Spectra?

Compressed scenarios are where the mass gap between the $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^{0}$ and the $\tilde{\chi}_1^{0}$ is of order **10 – 50 GeV.**

- Leptons are soft.
- Experimentally challenging for triggering
- Experimentally challenging for particle reconstruction and identification.

Is SUSY hiding in Compressed Spectra?

Compressed scenarios are where the mass gap between the $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^{0}$ and the $\tilde{\chi}_1^0$ is of order **10 – 50 GeV.**

- Leptons are soft.
- Experimentally challenging for triggering
- Experimentally challenging for particle reconstruction and identification.

Probing Compressed Masses with an ISR jet

To improve the search sensitivity to **small mass gap** regions can utilize a **hard initial state radiation** (ISR). **Explored combined** lepton+jet+ $E_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$ to trigger on ISR.

Probing Compressed Masses with an ISR jet

Probing Compressed Masses with an ISR jet

Background Estimation

Two main categories of background:

- **Reducible**: 1 or more **fake** light lepton/tau. Estimated with **data-driven Matrix** Method.
- Irreducible: Three leptons are all real and prompt in final state.
 - **Dominant** sources normalised to data in **Control Regions**.
 - Sub-dominant sources are simulated with MC.

arXiv:1509.07152

Submitted to PRD

VR3L-1a: ISR Validation region targeting low E_Tmiss b-depleted backgrounds

VR3L-1b: ISR Validation region

Validation regions Test background modelling against data Orthogonal to signal regions

targeting b-enriched backgrounds

Y. Shehu - U.of Sussex

ISR Signal Regions

	Common							
ℓ flavor/sign	$\ell^{\pm}\ell^{\mp}\ell,\ell^{\pm}\ell^{\mp}\ell'$							
$p_{\mathrm{T}}^{\mathrm{lep 1}}$	< 30 GeV							
<i>b</i> -jet	veto							
$E_{ m T}^{ m miss}$	> 50 GeV							
$m_{ m SFOS}$	veto 8.4–10.4 GeV							
SR	SR3ℓ-0a	SR3ℓ-0b	SR3ℓ-1a	SR3ℓ-1b				
Central jets	no jets $p_T > 50 \text{ GeV}$		\geq 1 jet $p_{\rm T} > 50 {\rm GeV}$					
$m_{ m SFOS}^{ m min}$	4–15 GeV	15–25 GeV	5–15 GeV	15–25 GeV				
Other	$30 < m_{\ell\ell\ell} < 60 \text{ GeV}$	$30 < m_{\ell\ell\ell} < 60 \text{ GeV}$	$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet} 1) > 2.7 {\rm rad}$	$\Delta \phi(E_{\rm T}^{\rm miss}, 3\ell) > 0.7\pi \text{ rad}$				
	$m_{\rm T} < 20~{ m GeV}$		$p_{\rm T}^{\rm fep 1}/p_{\rm T}^{\rm jet 1} < 0.2$	•				

- Recoil from ISR jet boosts low p_T
 electrons to meet selection requirements
- Bin in m_{sfos} min to target soft leptons
- SR3I-1a targets the smallest $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$ mass splittings, selecting events with $5 < m_{\rm sfos}^{\rm min} < 15 \; {\rm GeV}$
- SR3I-1b targets slightly larger mass splittings, selecting events with 15 < m_{sfos} min < 25 GeV

Topology of events containing ISR jets can be used to discriminate against SM background

arXiv:1509.07152

Submitted to PRD

 $\Delta\Phi(E_T^{miss}, jet_1)$ in SR3I-1a and p_T^{jet1} in SR3I-1b.

ISR Signal Region Yields and Limits

	SR3ℓ-0a	SR3ℓ-0b	SR3ℓ-1a	SR3ℓ-1b
WZ	$0.59^{+0.47}_{-0.32}$	$5.0^{+1.5}_{-1.2}$	$0.54^{+0.20}_{-0.19}$	1.6 ± 0.4
ZZ	$0.23^{+0.09}_{-0.07}$	0.66 ± 0.16	0.024 ± 0.013	$0.10^{+0.05}_{-0.04}$
Reducible	$2.8^{+1.5}_{-2.2}$	$9.7^{+3.1}_{-3.6}$	0.09 ± 0.08	$1.4^{+1.0}_{-1.1}$
Others	$0.0033^{+0.0036}_{-0.0033}$	0.07 ± 0.05	0.013 ± 0.010	0.038 ± 0.021
Total SM	$3.7^{+1.6}_{-2.2}$	$15.4^{+3.5}_{-3.9}$	$0.67^{+0.22}_{-0.21}$	$3.1^{+1.1}_{-1.2}$
Data	4	15	1	3

- Observed and expected limits for direct slepton production in red.
- The limits for $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$ production and decay via SM Gauge bosons are not shown as compressed spectra signal regions have small sensitivity to these scenarios and did not improve significantly on published limits
- Pushed observed limits to 720 GeV for massless \(\tilde{\chi}_1^0\) and improved sensitivity along the diagonal.

- Yields show no excesses beyond standard model expectations
- Limits are calculated by combining all 3L disjoint regions
- For overlapping signal regions, the best expected exclusion region is used

Submitted to PRD

Plans for Run-2

- 4.0 fb⁻¹ of pp collisions recorded at \sqrt{s} = 13 TeV
- Will include 2016 data for Run2 analysis
- Improving on Run1 strategy, two pronged approach targeting intermediate and high mass C1N2,N1 regions
- Compressed spectra investigation to follow later

ATLAS Online Luminosity

LHC Delivered ATLAS Recorded

Total Delivered: 4.34 fb⁻¹ Total Recorded: 4.00 fb⁻¹ s = 13 TeV

Intermediate, high mass regions

Y. Shehu - U.of Sussex

3L Searches for SUSY at High Luminosity LHC

In addition to compressed spectra, sensitivity to electroweak SUSY 3L signatures explored under high luminosity LHC (HL-LHC) conditions.

Upgrade scenarios at \sqrt{s} = 14 TeV: 300 fb⁻¹ and $<\mu>\sim$ 60 (LHC) 3000 fb⁻¹ and $<\mu>\sim$ 140 (HL-LHC) Reoptimisation of 3L analysis under these conditions

Higher energies and luminosities show possible improvement in sensitivity to electroweak SUSY 3-lepton channel.

ATL-PHYS-PUB-2014-010

Summary & Outlook

- **★ 3-Lepton** final states in **electroweak SUSY** processes are key to **potential** discovery of SUSY.
- ★ Significant region of parameter space previously explored, however not the compressed region.
- * Final states with **soft leptons** can be explored with **3 lepton + ISR jet analysis**.
- ★ No excess seen above SM expectations but significant improvements on existing limits.
- * With **Run-2** data and High Luminosity LHC conditions in the future expect greater sensitivity with possibility of **discovery**!

Back-up