Light BSM Higgs boson searches

R. Aggleton (Bristol/RAL/Southampton)

for the CMS collaboration in collaboration with

D. Barducci, A. Belyaev, N-E. Bomark, S. Moretti

Overview

Look at searches for a light Higgs boson

• CMS: 4*τ*

• ATLAS: $2\mu 2\tau$

Interpretation in the context of the NMSSM

NMSSM

- ullet NMSSM: Next-to-Minimal Supersymmetric Standard Model
 - = MSSM + singlet/ino S + parameters λ , κ parameter μ

- Keeps attractive features of MSSM
 - Solve Hierarchy problem, DM candidate...

- Fixes issues in MSSM
 - μ -problem \rightarrow dynamically generate μ with $\langle S \rangle$, now scale independent
 - ▶ "little" fine-tuning problem → extra term ~ κ to ease fine-tuning

• More Higgses: $h_{1,2,3}$ (CP-even), $a_{1,2}$ (CP-odd), $h^{\pm} \rightarrow h_{125} = h_1$ or h_2

Motivation

• Consider scenario where a_1 or h_1 ($\equiv \phi_1$) is light: $2m_\tau \rightarrow 2m_b$

- If $\phi_1 = h_1: h_2 \to 2h_1$
- If $\phi_1 = a_1$: $h_1 \to 2a_1$ or $h_2 \to 2a_1$

 $\phi_1 = h_1 \text{ or } a_1$

ullet What can we expect? Decompose the total cross-section imes BR:

$$\sigma \times BR \equiv \sigma^{ggh}(SM) \times ggh^2 \times BR(h \rightarrow \phi_1\phi_1) \times BR(\phi_1 \rightarrow \tau \tau)^2$$

• When $h_i = h_{125}$:

$$\sigma \times BR \equiv \sigma^{ggh}(SM) \times ggh^2 \times BR(h \rightarrow \phi_1\phi_1) \times BR(\phi_1 \rightarrow \tau \tau)^2$$

(wrt SM ggh² coupling)

Contours of constant ggh x BR

→ always ≤ 0.2

Limited by experimental constraints

• When $h_i \neq h_{125}$:

$$\sigma \times BR \equiv \sigma^{ggh}(SM) \times ggh^2 \times BR(h \rightarrow \phi_1\phi_1) \times BR(\phi_1 \rightarrow \tau \tau)^2$$

Contours of constant ggh × BR

→ always ≤ 0.07

• Total $\sigma \times BR$ (h_i = h₁₂₅):

• Total $\sigma \times BR$ ($h_i \neq h_{125}$):

Start searching!

Aside: how CMS detects objects

Signal Characteristics

- $m_h >> m_\phi \rightarrow \phi_1$ heavily boosted, tau pair collimated
 - Identifying 2 pairs of overlapping taus non-trivial

- Search strategies to cope with boosted taus:
 - Modify tau ID to remove overlapping particle (<u>CMS HIG-14-022</u>)
 - Choose an alternative way of identifying taus (<u>CMS HIG-14-019</u>)
 - Or choose a different decay channel (<u>ATLAS HIGG-2014-02</u>)

- ATLAS search for $2\mu 2\tau$
 - Penalised by BR
 - Cleaner dimuon invariant mass spectrum to look for peak

Signal Characteristics

- Use simple objects instead to target 1-prong decays: 1 muon + 1 track
 - One tau in each pair decays to a muon
 - Other tau decays to 1 charged particle

Can trigger on 2 muons

Signal Characteristics

Muon-track "pair" or "system", randomly assign label "1" or "2"

Background

- Backgrounds dominated by QCD events
 - lacktriangle Typically semi-muonic b/c hadron decay from $b\overline{b}$ events
 - Same-charge muons result of: $b \to c + \mu^- \bar{\nu}_\mu$ $\bar{b} \to \bar{c} \to \bar{s} + \mu^- \bar{\nu}_\mu$

Example from PYTHIA8:

Background Estimate

- Use data-driven estimate (lack of MC stats)
- Use muon-track pair invariant mass (m_i) as discriminating variable:
 - Use 2D distribution of m₁ vs m₂
 - Get distribution for background events from "sideband" region

Stronger background rejection for $m_{\phi} = 8$, less powerful for $m_{\phi} = 4$

Background Estimate

- Want sideband region rich in QCD events, little signal contamination
 - with similar kinematics to signal region

QCD events have muon amongst jet of other hadrons/leptons

Sideband region = signal selection but allowing 1 or 2 extra tracks

around one muon $\mu \text{ with 1}$ additional track(s)

Sideband region

Limit

• See no significant excess in data \rightarrow set upper limit on $\sigma \times BR$

$$(\sigma \mathcal{B})_{sig} \equiv \sigma(gg \to H(125)) \, \mathcal{B}(H(125) \to \phi_1 \phi_1) \, \mathcal{B}^2(\phi_1 \to \tau \tau)$$

Limit

• See no significant excess in data \rightarrow set upper limit on $\sigma \times BR$

Limit

• See no significant excess in data \rightarrow set upper limit on $\sigma \times BR$

ATLAS result

• Trigger on single μ (36 GeV) or di- μ (18 + 8)

• Optimised for $m_a \lesssim 10 \text{ GeV}$

• Look in window $m_{\mu\mu} \in [2.8, 70]$ GeV

• Perform template fit on $m_{\mu\mu}$ data, including backgrounds from J/ψ , Y, Drell-Yan (Z^*/γ) , tt.

ATLAS result

Interpretation

Compare to 8 TeV parameter space scans using ATLAS & CMS limits:

• For reference, $\sigma^{ggh}(m_h=125) = 19.3$ pb at 8 TeV

Looking to Run 2

- Larger √s:
 - σ (ggh) increases by ~ \times 2.7 (σ ^{ggh}_{SM} \approx 50pb)

• QCD $b\bar{b}$ background increase: $\sigma\approx 200 \mu b \to 350 \mu b$ (x ~1.5). Overall S:B increase by ~ x 1.8

 Potential for more sophisticated MVA-based techniques to conquer boosted di-taus

Investigate region above 2m_b

Looking to Run 2

• $\sigma \times$ BR landscape at 13 TeV:

$m_a > 2m_\tau : bb\tau\tau$

Balance between:

- \blacktriangleright BR(bb) >> BR($\tau\tau$) >> BR($\mu\mu$)
- bb → lots of QCD background

$m_a > 2m_\tau : bb\tau\tau$

Balance between:

- \blacktriangleright BR(bb) >> BR($\tau\tau$) >> BR($\mu\mu$)
- bb → lots of QCD background

Interesting dynamics here

- boosted B-jet pairs

Conclusion

 First LHC searches for production of a pair of light bosons decaying into pairs of taus performed

- Placed limits on $\sigma \times BR$ for ggh(125) $\rightarrow 2\phi \rightarrow 4\tau$
 - For $m_{\phi} = 8$ GeV: CMS 4.5 pb obs. (3pb exp.), ATLAS 1.97 pb obs. (2.06pb exp.)

NMSSM still looking healthy

Baseline for 13 TeV analysis

Backup

ullet What can we expect? Decompose the total cross-section imes BR:

$$\sigma \times BR \equiv \sigma^{ggh}(SM) \times ggh^2 \times BR(h \rightarrow \phi_1\phi_1) \times BR(\phi_1 \rightarrow \tau \tau)^2$$

Parameter scans include latest updates to B-physics calculations & experimental values in NMSSMTools

ullet What can we expect? Decompose the total cross-section imes BR:

$$\sigma \times BR \equiv \sigma^{ggh}(SM) \times ggh^2 \times BR(h \rightarrow \phi_1\phi_1) \times BR(\phi_1 \rightarrow \tau \tau)^2$$

Strict constraints

$$\sigma \times BR \equiv \sigma^{ggh}(SM) \times ggh^2 \times BR(h \rightarrow \phi_1\phi_1) \times BR(\phi_1 \rightarrow \tau \tau)^2$$

MC yields

Sample	Number of events							
Data	873							
Expected background events								
QCD multijet	820 ± 320							
tt	1.2 ± 0.2							
Electroweak	5.0 ± 4.7							
Signal acceptance $\mathcal{A}(gg \to H(125) \to \phi_1\phi_1 \to 4\tau)$								
$m_{\phi_1} = 4 \text{GeV}$	$(5.38 \pm 0.23) \times 10^{-4}$							
$m_{\phi_1} = 5 \mathrm{GeV}$	$(4.36 \pm 0.21) \times 10^{-4}$							
$m_{\phi_1} = 6 \mathrm{GeV}$	$(4.00 \pm 0.23) \times 10^{-4}$							
$m_{\phi_1} = 7 \mathrm{GeV}$	$(4.04 \pm 0.20) imes 10^{-4}$							
$m_{\phi_1} = 8 \text{GeV}$	$(3.13 \pm 0.18) \times 10^{-4}$							
Expected signal events for $(\sigma B)_{sig} = 5 \text{ pb}$								
$m_{\phi_1} = 4\mathrm{GeV}$	53.0 ± 2.3							
$m_{\phi_1} = 5 \text{GeV}$	43.0 ± 2.0							
$m_{\phi_1} = 6 \mathrm{GeV}$	39.5 ± 2.0							
$m_{\phi_1} = 7 \mathrm{GeV}$	39.9 ± 2.0							
$m_{\phi_1} = 8 \text{GeV}$	30.8 ± 1.8							

MC yields

Better acceptance for lighter m_a due to larger τ boost

ggH \rightarrow 2a \rightarrow 4 τ (Gen. level), require \geq 2 SS μ

Background Estimate

- Relies on same shape for background events in both signal & sideband regions
 - distribution shape uncorrelated with track multiplicity around a muon
 - tested using dedicated MC made with PYTHIA8, no detector effects

Signal Extraction

- Use 2D plot of m₁ vs m₂ to fit signal + background to data
 - Normalisations of signal & background templates not fixed

Table 4: The observed upper limit on $(\sigma \mathcal{B})_{\text{sig}}$ at 95% CL, together with the expected limit obtained in the background-only hypothesis, as a function of m_{ϕ_1} . Also shown are $\pm 1\sigma$ and $\pm 2\sigma$ probability intervals around the expected limit.

Upper limits on $(\sigma \mathcal{B})_{sig}$ [pb] at 95% CL										
m_{ϕ_1} [GeV]	observed	$d -2\sigma -1\sigma$ expected		$+1\sigma$	$+2\sigma$					
4	7.1	5.7	7.6	10.6	14.9	20.2				
5	10.3	5.4	7.3	10.3	15.0	21.2				
6	8.6	2.8	3.8	5.4	7.8	11.0				
7	5.0	1.6	2.2	3.1	4.5	6.5				
8	4.5	1.5	2.0	2.9	4.3	6.2				

Table 3: The number of observed data events, the predicted background yields, and the expected signal yields, for different masses of the ϕ_1 boson in individual bins of the (m_1, m_2) distribution. The background yields and uncertainties are obtained from the maximum-likelihood fit under the background-only hypothesis. The signal yields are obtained from simulation and normalized to a signal cross section times branching fraction of 5 pb. The uncertainties in the signal yields include systematic and MC statistical uncertainties. The bin notation follows the definition presented in Fig. 2.

			Expected signal for $(\sigma B)_{\text{sig}} = 5 \text{ pb}$, m_{ϕ_1} [GeV] =					
Bin	Data	Bkg.	4	5	6	7	8	
(1,1)	124	116 ± 7	9.7 ± 1.5	1.9 ± 0.5	< 0.1	0.1 ± 0.1	< 0.1	
(1,2)	231	247 ± 10	21.6 ± 2.9	6.8 ± 1.1	1.9 ± 0.5	0.3 ± 0.2	0.1 ± 0.1	
(1,3)	91	98 ± 6	3.8 ± 0.8	4.9 ± 0.9	2.4 ± 0.6	0.9 ± 0.3	0.2 ± 0.2	
(1,4)	64	60 ± 5	0.1 ± 0.1	1.5 ± 0.4	1.8 ± 0.5	0.8 ± 0.3	0.5 ± 0.2	
(2,2)	137	142 ± 8	14.2 ± 2.0	8.2 ± 1.3	2.8 ± 0.6	1.5 ± 0.4	0.8 ± 0.3	
(2,3)	112	104 ± 6	3.7 ± 0.7	10.4 ± 1.6	9.2 ± 1.4	4.4 ± 0.8	2.3 ± 0.6	
(2,4)	61	59 ± 5	< 0.1	2.6 ± 0.6	5.6 ± 1.0	8.1 ± 1.3	4.0 ± 0.8	
(3,3)	16	19 ± 2	< 0.1	4.8 ± 0.9	4.8 ± 0.9	3.7 ± 0.7	2.2 ± 0.5	
(3,4)	29	23 ± 3	< 0.1	1.9 ± 0.5	8.0 ± 0.9	11.1 ± 1.5	9.4 ± 1.4	
(4,4)	8	7 ± 1	< 0.1	< 0.1	3.1 ± 0.6	9.1 ± 1.4	11.2 ± 1.7	

Experimental constraints

Interpretation

- Analysis doesn't constrain $m_{\tau\tau\tau}$ can have contributions from $h \neq h_{SM}$
 - Similar $\sigma \times BR$

Looking to Run 2

• $\sigma \times BR$ landscape at 13 TeV:

Figure 2: Observed $m_{\mu\mu}$ distribution in CRj (top) and CRb (bottom) and the SM background model after a simultaneous fit. The Z/γ^* component of the fit is the combination of the Z boson resonance and the γ^* continuum models. The % residual of the fit is shown below each plot. Simulated SM backgrounds are shown in the stack, with the Z/γ^* sample only valid above $m_{\mu\mu} > 10 \,\text{GeV}$. The two insets show magnified versions of the J/ψ and Υ resonances.